8,294 research outputs found

    Using time-frequency analysis to determine time-resolved detonation velocity with microwave interferometry

    Get PDF
    Two time-frequency analysis methods based on the short-time Fourier transform (STFT) and continuous wavelet transform (CWT) were used to determine time-resolved detonation velocities with microwave interferometry (MI). The results were directly compared to well-established analysis techniques consisting of a peak-picking routine as well as a phase unwrapping method (i.e., quadrature analysis). The comparison is conducted on experimental data consisting of transient detonation phenomena observed in triaminotrinitrobenzene and ammonium nitrate-urea explosives, representing high and low quality MI signals, respectively. Time-frequency analysis proved much more capable of extracting useful and highly resolved velocity information from low quality signals than the phase unwrapping and peak-picking methods. Additionally, control of the time-frequency methods is mainly constrained to a single parameter which allows for a highly unbiased analysis method to extract velocity information. In contrast, the phase unwrapping technique introduces user based variability while the peak-picking technique does not achieve a highly resolved velocity result. Both STFT and CWT methods are proposed as improved additions to the analysis methods applied to MI detonation experiments, and may be useful in similar applications

    Magnetized Domain Walls in the Deconfined Sakai-Sugimoto Model at Finite Baryon Density

    Get PDF
    The magnetized pure pion gradient (5ϕ\mathcal{5}\phi) phase in the deconfined Sakai-Sugimoto model is explored at zero and finite temperature. We found that the temperature has very small effects on the phase. The thermodynamical properties of the phase shows that the excitations behave like a scalar solitonic free particles. By comparing the free energy of the pion gradient phase to the competing multiquark-pion gradient (MQ-5ϕ\mathcal{5}\phi) phase, it becomes apparent that the pure pion gradient is less thermodynamically preferred than the MQ-5ϕ\mathcal{5}\phi phase. However, in the parameter space where the baryonic chemical potential is smaller than the onset value of the multiquark, the dominating magnetized nuclear matter is the pion gradient phase.Comment: 20 pages, 9 figure

    Quantum critical transport, duality, and M-theory

    Get PDF
    We consider charge transport properties of 2+1 dimensional conformal field theories at non-zero temperature. For theories with only Abelian U(1) charges, we describe the action of particle-vortex duality on the hydrodynamic-to-collisionless crossover function: this leads to powerful functional constraints for self-dual theories. For the n=8 supersymmetric, SU(N) Yang-Mills theory at the conformal fixed point, exact hydrodynamic-to-collisionless crossover functions of the SO(8) R-currents can be obtained in the large N limit by applying the AdS/CFT correspondence to M-theory. In the gravity theory, fluctuating currents are mapped to fluctuating gauge fields in the background of a black hole in 3+1 dimensional anti-de Sitter space. The electromagnetic self-duality of the 3+1 dimensional theory implies that the correlators of the R-currents obey a functional constraint similar to that found from particle-vortex duality in 2+1 dimensional Abelian theories. Thus the 2+1 dimensional, superconformal Yang Mills theory obeys a "holographic self duality" in the large N limit, and perhaps more generally.Comment: 35 pages, 4 figures; (v2) New appendix on CFT2, corrected normalization of gauge field action, added ref

    Relationships Between Neuronal Birthdates and Tonotopic Positions in The Mouse Cochlear Nucleus

    Get PDF
    Tonotopy is a key anatomical feature of the vertebrate auditory system, but little is known about the mechanisms underlying its development. Since date of birth of a neuron correlates with tonotopic position in the cochlea, we investigated if it also correlates with tonotopic position in the cochlear nucleus (CN). In the cochlea, spiral ganglion neurons are organized in a basal to apical progression along the length of the cochlea based on birthdates, with neurons in the base (responding to high‐frequency sounds) born early around mouse embryonic day (E) 9.5–10.5, and those in the apex (responding to low‐frequency sounds) born late around E12.5‑13.5. Using a low‐dose thymidine analog incorporation assay, we examine whether CN neurons are arranged in a spatial gradient according to their birthdates. Most CN neurons are born between E10.5 ānd E13.5, with a peak at E12.5. A second wave of neuron birth was observed in the dorsal cochlear nucleus (DCN) beginning on E14.5 and lasts until E18.5. Large excitatory neurons were born in the first wave, and small local circuit neurons were born in the second. No spatial gradient of cell birth was observed in the DCN. In contrast, neurons in the anteroventral cochlear nucleus (AVCN) were found to be arranged in a dorsal to ventral progression according to their birthdates, which are aligned with the tonotopic axis. Most of these AVCN neurons are endbulb‐innervated bushy cells. The correlation between birthdate and tonotopic position suggests testable mechanisms for specification of tonotopic position

    The Sound of Topology in the AdS/CFT Correspondence

    Full text link
    Using the gauge/gravity correspondence, we study the properties of 2-point correlation functions of finite-temperature strongly coupled gauge field theories, defined on a curved space of general spatial topology with a dual black hole description. We derive approximate asymptotic expressions for the correlation functions and their poles, supported by exact numerical calculations, and study their dependence on the dimension of spacetime and the spatial topology. The asymptotic structure of the correlation functions depends on the relation between the spatial curvature and the temperature, and is noticeable when they are of the same order. In the case of a hyperbolic topology, a specific temperature is identified for which exact analytical solutions exist for all types of perturbations. The asymptotic structure of the correlation functions poles is found to behave in a non-smooth manner when approaching this temperature.Comment: 65 pages, LaTeX, 21 figures, 1 table; fixed a small error in subsection 3.

    Confined Phase In The Real Time Formalism And The Fate Of The World Behind The Horizon

    Full text link
    In the real time formulation of finite temperature field theories, one introduces an additional set of fields (type-2 fields) associated to each field in the original theory (type-1 field). In hep-th/0106112, in the context of the AdS-CFT correspondence, Maldacena interpreted type-2 fields as living on a boundary behind the black hole horizon. However, below the Hawking-Page transition temperature, the thermodynamically preferred configuration is the thermal AdS without a black hole, and hence there are no horizon and boundary behind it. This means that when the dual gauge theory is in confined phase, the type-2 fields cannot be associated with the degrees of freedom behind the black hole horizon. I argue that in this case the role of the type-2 fields is to make up bulk type-2 fields of classical closed string field theory on AdS at finite temperature in the real time formalism.Comment: v2: cases divided into sections with more detailed explanations. considerably enlarged with examples and a lot of figures. sec 4.1.2 for general closed cut-out circuits and appendix A for a sample calculation newly added. many minor corrections and clarifying comments. refs added. v3: refs and related discussion added. 1+46 pages, 26 figures. published versio

    Hall viscosity from gauge/gravity duality

    Full text link
    In (2+1)-dimensional systems with broken parity, there exists yet another transport coefficient, appearing at the same order as the shear viscosity in the hydrodynamic derivative expansion. In condensed matter physics, it is referred to as "Hall viscosity". We consider a simple holographic realization of a (2+1)-dimensional isotropic fluid with broken spatial parity. Using techniques of fluid/gravity correspondence, we uncover that the holographic fluid possesses a nonzero Hall viscosity, whose value only depends on the near-horizon region of the background. We also write down a Kubo's formula for the Hall viscosity. We confirm our results by directly computing the Hall viscosity using the formula.Comment: 12 page

    The QCD phase transition at high temperature and low density

    Full text link
    We study the thermal properties of QCD in the presence of a small quark chemical potential ÎŒ\mu. Derivatives of the phase transition point with respect to ÎŒ\mu are computed at ÎŒ=0\mu=0 for 2 and 3 flavors of p-4 improved staggered fermions on a 163×416^3\times4 lattice. Moreover we contrast the case of isoscalar and isovector chemical potentials, quantify the effect of ÎŒ=Ìž0\mu\not=0 on the equation of state, and comment on the screening effect by dynamical quarks and the complex phase of the fermion determinant in QCD with ÎŒ=Ìž0\mu\not=0.Comment: Lattice2002(nonzerot), 3 pages, 2 figure

    The Impact Of Crystal Morphology On The Thermal Responses Of Ultrasonically-Excited Energetic Materials

    Get PDF
    The ability to detect explosive materials may be significantly enhanced with local increases in vapor pressure caused by an elevation of the materials\u27temperature. Recently, ultrasonic excitation has been shown to generate heat within plastic-bonded energetic materials. To investigate the impact of crystal morphology on this heating, samples of elastic binder are implanted with single ammonium perchlorate crystals of two distinct shape groups. Contact piezoelectric transducers are then used to excite the samples at ultrasonicfrequencies. The thermal responses of the crystals are recorded using infrared thermography, and the rate of heating is estimated. Surface temperature increases up to 15 °C are found to arise after 2 s of excitation, with much higher heating levels expected near the inclusions themselves as demonstrated by the chemical decomposition of some crystals under favorable excitation conditions. The rates of heat generation are compared to various crystal morphology features through 2D estimates of length scale, perimeter and irregularity. It is observed that crystals grown in the lab, featuring sharp geometric facets, exhibit a higher probability of significant heat generation than inclusions with more spherical shapes. However, no statistical link is found between the rates of heat generation and the crystal morphology in those samples that do generate significant heating, likely because variations in surface roughness cannot be entirely eliminated during experimentation. It is hoped that this study will lead to a better understanding of the nature of heat generation in energetic materialsfrom ultrasonic sources

    Heat generation in an elastic binder system with embedded discrete energetic particles due to high-frequency, periodic mechanical excitation

    Get PDF
    High-frequency mechanical excitation can induce heating within energetic materials and may lead to advances in explosives detection and defeat. In order to examine the nature of this mechanically induced heating, samples of an elastic binder (Sylgard 184) were embedded with inert and energetic particles placed in a fixed spatial pattern and were subsequently excited with an ultrasonic transducer at discrete frequencies from 100 kHz to 20 MHz. The temperature and velocity responses of the sample surfaces suggest that heating due to frictional effects occurred near the particles at excitation frequencies near the transducer resonance of 215 kHz. An analytical solution involving a heat point source was used to estimate heating rates and temperatures at the particle locations in this frequency region. Heating located near the sample surface at frequencies near and above 1 MHz was attributed to viscoelastic effects related to the surface motion of the samples. At elevated excitation parameters near the transducer resonance frequency, embedded particles of ammonium perchlorate and cyclotetramethylene-tetranitramine were driven to chemical decomposition
    • 

    corecore