10,552 research outputs found
Mariner Mars 1971 spacecraft destruct unit
Shaped charge destruct unit for Mariner Mars 1971 spacecraf
Efficient generation of an isolated single-cycle attosecond pulse
A new method for efficiently generating an isolated single-cycle attosecond
pulse is proposed. It is shown that the ultraviolet (UV) attosecond pulse can
be utilized as a robust tool to control the dynamics of electron wave packets
(EWPs). By adding a UV attosecond pulse to an infrared (IR) few-cycle pulse at
a proper time, only one return of the EWP to the parent ion is selected to
effectively contribute to the harmonics, then an isolated two-cycle 130-as
pulse with a bandwidth of 45 eV is obtained. After complementing the chirp, an
isolated single-cycle attosecond pulse with a duration less than 100 as seems
achievable. In addition, the contribution of the quantum trajectories can be
selected by adjusting the delay between the IR and UV fields. Using this
method, the harmonic and attosecond pulse yields are efficiently enhanced in
contrast to the scheme [G. Sansone {\it et al.}, Science {\bf314}, 443 (2006)]
using a few-cycle IR pulse in combination with the polarization gating
technique.Comment: 5 pages, 4 figure
A comparative study of methods for modelling the structural stiffness of generator components
Direct-drive generators are low speed electrical machines requiring robust and large supporting structures designed to resist the significant loads present during assembly and operation. Generator structures have to be stiff, especially in the radial direction for radial-flux machines. This paper presents three different structural modelling approaches: finite element, analytical and hybrid (a combination of the results obtained from dimensional studies and finite element analyses). These are used along with models of electromagnetic active material, to parametrically calculate the minimum structural stiffness and mass of the components forming the machine
Structural analysis and characterization of radial flux PM generators for direct-drive wind turbines
Wind turbine direct-drive generator structures are analysed in order to optimise and reduce mass. A method for modelling key stiffness parameters including a magnetic air-gap stiffness is outlined. Different approaches are used to parametrically calculate structural stiffness and mass. Finite element and analytical techniques are used to model mode 0 and mode 1 deflections and these can be used along with parametric models of electromagnetically active material
Lyapunov exponents from geodesic spread in configuration space
The exact form of the Jacobi -- Levi-Civita (JLC) equation for geodesic
spread is here explicitly worked out at arbitrary dimension for the
configuration space manifold M_E = {q in R^N | V(q) < E} of a standard
Hamiltonian system, equipped with the Jacobi (or kinetic energy) metric g_J. As
the Hamiltonian flow corresponds to a geodesic flow on (M_E,g_J), the JLC
equation can be used to study the degree of instability of the Hamiltonian
flow. It is found that the solutions of the JLC equation are closely resembling
the solutions of the standard tangent dynamics equation which is used to
compute Lyapunov exponents. Therefore the instability exponents obtained
through the JLC equation are in perfect quantitative agreement with usual
Lyapunov exponents. This work completes a previous investigation that was
limited only to two-degrees of freedom systems.Comment: REVTEX file, 10 pages, 2 figure
Longitudinal spin Seebeck coefficient: heat flux vs. temperature difference method
The determination of the longitudinal spin Seebeck effect (LSSE) coefficient
is currently plagued by a large uncertainty due to the poor reproducibility of
the experimental conditions used in its measurement. In this work we present a
detailed analysis of two different methods used for the determination of the
LSSE coefficient. We have performed LSSE experiments in different laboratories,
by using different setups and employing both the temperature difference method
and the heat flux method. We found that the lack of reproducibility can be
mainly attributed to the thermal contact resistance between the sample and the
thermal baths which generate the temperature gradient. Due to the variation of
the thermal resistance, we found that the scaling of the LSSE voltage to the
heat flux through the sample rather than to the temperature difference across
the sample greatly reduces the uncertainty. The characteristics of a single
YIG/Pt LSSE device obtained with two different setups was Vm/W and Vm/W with the heat flux method
and V/K and V/K
with the temperature difference method. This shows that systematic errors can
be considerably reduced with the heat flux method.Comment: PDFLaTeX, 10 pages, 6 figure
Application of Deep Compaction Techniques to Liquefaction Prevention
This article analyzes the application of dynamic compaction, vibroflotation and vibroreplacement (stone columns) to liquefaction prevention. The ground types to which they can be applied, the depths that can be reached and the degree of improvement that can be obtained are all studied. Finally, and on the basis of the above, basic guidelines are given for the design of ground improvement with these techniques and for the aforementioned purpose
Quantum computations with atoms in optical lattices: marker qubits and molecular interactions
We develop a scheme for quantum computation with neutral atoms, based on the
concept of "marker" atoms, i.e., auxiliary atoms that can be efficiently
transported in state-independent periodic external traps to operate quantum
gates between physically distant qubits. This allows for relaxing a number of
experimental constraints for quantum computation with neutral atoms in
microscopic potential, including single-atom laser addressability. We discuss
the advantages of this approach in a concrete physical scenario involving
molecular interactions.Comment: 15 pages, 14 figure
On the Running of the Cosmological Constant in Quantum General Relativity
We present arguments that show what the running of the cosmological constant
means when quantum general relativity is formulated following the prescription
developed by Feynman.Comment: 5 page
Calibration of CR-39 solid state nuclear track detector
Nowadays there are increasing uses of SSNTD on scientific works in
Thailand. Currently we are using SSNTD as an important tool for confirming active
fault zones in a province in which a new nuclear research reactor has been proposed
to come up. Soil gas radon was measured by both active and passive methods. In the
latter case CR-39 SSNTD was installed in a PVC tube of 50 cm long by 5 cm in
diameter. The tubes were placed in 50-cm deep holes lining perpendicular to the
faults’ trace for one week. In this paper we describe the method and the results on
calibrating these detectors using a radon chamber and a NIST-traceable radium-226
standard source.Author Affiliation: P Wanabongse, B Sola, J Jamsangtong and S Rattanabussayaporn
1. Thailand Institute of Nuclear Technology, 16 Vibhavadi Rangsit Road, Chatuchak,
Bangkok 10900, Thailand
2Department of Nuclear Technology, Chulalongkorn University, Payathai Road,
Patoomwon Bangkok 10330, Thailand
3Office of Atoms for Peace, 16 Vibhavadi Rangsit Road, Chatuchak, Bangkok 10900,
Thailand
E-mail : [email protected] Institute of Nuclear Technology, 16 Vibhavadi Rangsit Road, Chatuchak,
Bangkok 10900, Thailand
2Department of Nuclear Technology, Chulalongkorn University, Payathai Road,
Patoomwon Bangkok 10330, Thailand
3Office of Atoms for Peace, 16 Vibhavadi Rangsit Road, Chatuchak, Bangkok 10900,
Thailan
- …