27 research outputs found

    Tight coupling between electrical activity and exocytosis in mouse glucagon-secreting alpha-cells.

    No full text
    alpha-Cells were identified in preparations of dispersed mouse islets by immunofluorescence microscopy. A high fraction of alpha-cells correlated with a small cell size measured as the average cell diameter (10 microm) and whole-cell capacitance (<4 pF). The alpha-cells generated action potentials at a low frequency (1 Hz) in the absence of glucose. These action potentials were reversibly inhibited by elevation of the glucose concentration to 20 mmol/l. The action potentials originated from a membrane potential more negative than -50 mV, had a maximal upstroke velocity of 5 V/s, and peaked at +1 mV. Voltage-clamp experiments revealed the ionic conductances underlying the generation of action potentials. alpha-Cells are equipped with a delayed tetraethyl-ammonium-blockable outward current (activating at voltages above -20 mV), a large tetrodotoxin-sensitive Na+ current (above -30 mV; peak current 200 pA at +10 mV), and a small Ca2+ current (above -50 mV; peak current 30 pA at +10 mV). The latter flowed through omega-conotoxin GVIA (25%)- and nifedipine-sensitive (50%) Ca(2+)-channels. Mouse alpha-cells contained, on average, 7,300 granules, which undergo Ca(2+)-induced exocytosis when the alpha-cell is depolarized. Three functional subsets of granules were identified, and the size of the immediately releasable pool was estimated as 80 granules, or 1% of the total granule number. The maximal rate of exocytosis (1.5 pF/s) was observed 21 ms after the onset of the voltage-clamp depolarization, which is precisely the duration of Ca(2+)-influx during an action potential. Our results suggest that the secretory machinery of the alpha-cell is optimized for maximal efficiency in the use of Ca2+ for exocytosis

    Cell coupling in mouse pancreatic beta-cells measured in intact islets of Langerhans.

    No full text
    The perforated whole-cell configuration of the patch-clamp technique was applied to functionally identified beta-cells in intact mouse pancreatic islets to study the extent of cell coupling between adjacent beta-cells. Using a combination of current- and voltage-clamp recordings, the total gap junctional conductance between beta-cells in an islet was estimated to be 1.22 nS. The analysis of the current waveforms in a voltage-clamped cell (due to the firing of an action potential in a neighbouring cell) suggested that the gap junctional conductance between a pair of beta-cells was 0.17 nS. Subthreshold voltage-clamp depolarization (to -55 mV) gave rise to a slow capacitive current indicative of coupling between beta-cells, but not in non-beta-cells, with a time constant of 13.5 ms and a total charge movement of 0.2 pC. Our data suggest that a superficial beta-cell in an islet is in electrical contact with six to seven other beta-cells. No evidence for dye coupling was obtained when cells were dialysed with Lucifer yellow even when electrical coupling was apparent. The correction of the measured resting conductance for the contribution of the gap junctional conductance indicated that the whole-cell KATP channel conductance (GK,ATP) falls from approximately 2.5 nS in the absence of glucose to 0.1 nS at 15 mM glucose with an estimated IC50 of approximately 4mM. Theoretical considerations indicate that the coupling between beta-cells within the islet is sufficient to allow propagation of [Ca2+]i waves to spread with a speed of approximately 80 microms-1, similar to that observed experimentally in confocal [Ca2+]i imaging

    Fast insulin secretion reflects exocytosis of docked granules in mouse pancreatic B-cells.

    No full text
    A readily releasable pool (RRP) of granules has been proposed to underlie the first phase of insulin secretion. In the present study we combined electron microscopy, insulin secretion measurements and recordings of cell capacitance in an attempt to define this pool ultrastructurally. Mouse pancreatic B-cells contain approximately 9,000 granules, of which 7% are docked below the plasma membrane. The number of docked granules was reduced by 30% (200 granules) during 10 min stimulation with high K+. This stimulus depolarized the cell to -10 mV, elevated cytosolic [Ca2+] ([Ca2+](i)) from a basal concentration of 130 nM to a peak of 1.3 microM and released 0.5 ng insulin/islet, corresponding to 200-300 granules/cell. The Ca2+ transient decayed towards the prestimulatory concentration within approximately 200 s, presumably reflecting Ca2+ channel inactivation. Renewed stimulation with high K+ failed to stimulate insulin secretion when applied in the absence of glucose. The size of the RRP, derived from the insulin measurements, is similar to that estimated from the increase in cell capacitance elicited by photolytic release of caged Ca2+. We propose that the RRP represents a subset of the docked pool of granules and that replenishment of RRP can be accounted for largely by chemical modification of granules already in place or situated close to the plasma membrane

    Z-score differences based on cross-sectional growth charts do not reflect the growth rate of very low birth weight infants.

    No full text
    ObjectiveTo test whether the assessment of growth in very low birth weight infants during the hospital stay using z-score differences (Zdiff) is confounded by gestational age (GA), birth weight percentiles (BW%ile), and length of the observation period (LOP). We hypothesize that Zdiff calculated from growth charts based on birth weight data introduces a systematic statistical error leading to falsely classified growth as restricted in infants growing similarly to the 50th percentile.MethodsThis observational study included 6,926 VLBW infants from the German Neonatal Network (2009 to 2015). Inclusion criterion was discharge between 37 and 41 weeks postmenstrual age. For each infant, Zdiff, weight gain velocity, and reference growth rate (50th percentile Fenton) from birth to discharge were calculated. To account for gestational age dependent growth rates, assessment of growth was standardized calculating the weight gain ratio (WGR) = weight gain velocity/reference growth rate. The primary outcome is the variation of the Zdiff-to-WGR relationship.ResultsZdiff and WGR showed a weak agreement with a Zdiff of -0.74 (-1.03, -0.37) at the reference growth rate of the 50th percentile (WGR = 1). A significant proportion (n = 1,585; 23%) of infants with negative Zdiff had weight gain velocity above the 50th percentile's growth rate. Zdiff to WGR relation was significantly affected by the interaction of GA x BW%ile x LOP.ConclusionThis study supports the hypothesis that Zdiff, which are calculated using birth weights, are confounded by skewed reference data and can lead to misinterpretation of growth rates. New concepts like individualized growth trajectories may have the potential to overcome this limitation

    Fast exocytosis with few Ca(2+) channels in insulin-secreting mouse pancreatic B cells.

    Get PDF
    The association of L-type Ca(2+) channels to the secretory granules and its functional significance to secretion was investigated in mouse pancreatic B cells. Nonstationary fluctuation analysis showed that the B cell is equipped with <500 alpha1(C) L-type Ca(2+) channels, corresponding to a Ca(2+) channel density of 0.9 channels per microm(2). Analysis of the kinetics of exocytosis during voltage-clamp depolarizations revealed an early component that reached a peak rate of 1.1 pFs(-1) (approximately 650 granules/s) 25 ms after onset of the pulse and is completed within approximately 100 ms. This component represents a subset of approximately 60 granules situated in the immediate vicinity of the L-type Ca(2+) channels, corresponding to approximately 10% of the readily releasable pool of granules. Experiments involving photorelease of caged Ca(2+) revealed that the rate of exocytosis was half-maximal at a cytoplasmic Ca(2+) concentration of 17 microM, and concentrations >25 microM are required to attain the rate of exocytosis observed during voltage-clamp depolarizations. The rapid component of exocytosis was not affected by inclusion of millimolar concentrations of the Ca(2+) buffer EGTA but abolished by addition of exogenous L(C753-893), the 140 amino acids of the cytoplasmic loop connecting the 2(nd) and 3(rd) transmembrane region of the alpha1(C) L-type Ca(2+) channel, which has been proposed to tether the Ca(2+) channels to the secretory granules. In keeping with the idea that secretion is determined by Ca(2+) influx through individual Ca(2+) channels, exocytosis triggered by brief (15 ms) depolarizations was enhanced 2.5-fold by the Ca(2+) channel agonist BayK8644 and 3.5-fold by elevating extracellular Ca(2+) from 2.6 to 10 mM. Recordings of single Ca(2+) channel activity revealed that patches predominantly contained no channels or many active channels. We propose that several Ca(2+) channels associate with a single granule thus forming a functional unit. This arrangement is important in a cell with few Ca(2+) channels as it ensures maximum usage of the Ca(2+) entering the cell while minimizing the influence of stochastic variations of the Ca(2+) channel activity
    corecore