24,065 research outputs found

    Massless Scalar Field Propagator in a Quantized Space-Time

    Full text link
    We consider in detail the analytic behaviour of the non-interacting massless scalar field two-point function in H.S. Snyder's discretized non-commuting spacetime. The propagator we find is purely real on the Euclidean side of the complex p2p^2 plane and goes like 1/p21/p^2 as p20p^2\to 0 from either the Euclidean or Minkowski side. The real part of the propagator goes smoothly to zero as p2p^2 increases to the discretization scale 1/a21/a^2 and remains zero for p2>1/a2p^2>1/a^2. This behaviour is consistent with the termination of single-particle propagation on the ultraviolet side of the discretization scale. The imaginary part of the propagator, consistent with a multiparticle-production branch discontinuity, is finite and continuous on the Minkowski side, slowly falling to zero when 1/a2<p2<1/a^2<p^2<\infty. Finally, we argue that the spectral function for the multiparticle states appears to saturate as p2p^2 probes just beyond the 1/a21/a^2 discretization scale. We speculate on the cosmological consequences of such a spectral function.Comment: 6 pages, 1 eps figure embedded in manuscrip

    Nanoscale alpha-structural domains in the phonon-glass thermoelectric material beta-Zn4Sb3

    Get PDF
    A study of the local atomic structure of the promising thermoelectric material beta-Zn4Sb3, using atomic pair distribution function (PDF) analysis of x-ray- and neutron-diffraction data, suggests that the material is nanostructured. The local structure of the beta phase closely resembles that of the low-temperature alpha phase. The alpha structure contains ordered zinc interstitial atoms which are not long range ordered in the beta phase. A rough estimate of the domain size from a visual inspection of the PDF is <~10 nm. It is probable that the nanoscale domains found in this study play an important role in the exceptionally low thermal conductivity of beta-Zn4Sb3

    Wave localization in binary isotopically disordered one-dimensional harmonic chains with impurities having arbitrary cross section and concentration

    Full text link
    The localization length for isotopically disordered harmonic one-dimensional chains is calculated for arbitrary impurity concentration and scattering cross section. The localization length depends on the scattering cross section of a single scatterer, which is calculated for a discrete chain having a wavelength dependent pulse propagation speed. For binary isotopically disordered systems composed of many scatterers, the localization length decreases with increasing impurity concentration, reaching a mimimum before diverging toward infinity as the impurity concentration approaches a value of one. The concentration dependence of the localization length over the entire impurity concentration range is approximated accurately by the sum of the behavior at each limiting concentration. Simultaneous measurements of Lyapunov exponent statistics indicate practical limits for the minimum system length and the number of scatterers to achieve representative ensemble averages. Results are discussed in the context of future investigations of the time-dependent behavior of disordered anharmonic chains.Comment: 8 pages, 10 figures, submitted to PR

    Sub-shot-noise photon-number correlation in mesoscopic twin-beam of light

    Get PDF
    We demonstrate sub-shot-noise photon-number correlations in a (temporal) multimode mesoscopic (103\sim 10^3 detected photons) twin-beam produced by ps-pulsed spontaneous non-degenerate parametric downconversion. We have separately detected the signal and idler distributions of photons collected in twin coherence areas and found that the variance of the photon-count difference goes below the shot-noise limit by 3.25 dB. The number of temporal modes contained in the twin-beam, as well as the size of the twin coherence areas, depends on the pump intensity. Our scheme is based on spontaneous downconversion and thus does not suffer from limitations due to the finite gain of the parametric process. Twin-beams are also used to demonstrate the conditional preparation of a nonclassical (sub-Poissonian) state.Comment: 5 pages, 5 (low-res) figures, to appear on PR

    Effect of surface tension on the growth mode of highly strained InGaAs on GaAs(100)

    Full text link
    We have investigated the molecular beam epitaxy growth of highly strained InGaAs on GaAs(100) as a function of the anion to cation flux ratio. Using reflection high energy electron diffraction the evolution of the film morphology is monitored and the surface lattice constant is measured. It is found that the cation to anion flux ratio dramatically affects the growth mode. Under arsenic‐rich conditions, growth is characterized by a two‐dimensional (2D) to three‐dimensional (3D) morphological transformation. However, for cation‐stabilized conditions, 3D islanding is completely suppressed, and 2D planar growth is observed. We associate these differences in the growth mode with corresponding changes in the surface tension of the overlayer. A high surface tension stabilizes 2D growth. An analysis which relates surface tension to a critical thickness for the onset of coherent island formation supports this view.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/70295/2/APPLAB-62-1-46-1.pd

    The Backgrounds Data Center

    Get PDF
    The Strategic Defense Initiative Organization has created data centers for midcourse, plumes, and backgrounds phenomenologies. The Backgrounds Data Center (BDC) has been designated as the prime archive for data collected by SDIO programs. The BDC maintains a Summary Catalog that contains 'metadata,' that is, information about data, such as when the data were obtained, what the spectral range of the data is, and what region of the Earth or sky was observed. Queries to this catalog result in a listing of all data sets (from all experiments in the Summary Catalog) that satisfy the specified criteria. Thus, the user can identify different experiments that made similar observations and order them from the BDC for analysis. On-site users can use the Science Analysis Facility (SAFE for this purpose. For some programs, the BDC maintains a Program Catalog, which can classify data in as many ways as desired (rather than just by position, time, and spectral range as in the Summary Catalog). For example, data sets could be tagged with such diverse parameters as solar illumination angle, signal level, or the value of a particular spectral ratio, as long as these quantities can be read from the digital record or calculated from it by the ingest program. All unclassified catalogs and unclassified data will be remotely accessible

    Observers and Measurements in Noncommutative Spacetimes

    Full text link
    We propose a "Copenhagen interpretation" for spacetime noncommutativity. The goal is to be able to predict results of simple experiments involving signal propagation directly from commutation relations. A model predicting an energy dependence of the speed of photons of the order E/E_Planck is discussed in detail. Such effects can be detectable by the GLAST telescope, to be launched in 2006.Comment: 10 pp; v2: equivalence of observers explicitely stated; v3: minor changes, references and remarks added, burst spreading with energy emphasized as a signature rather than nois

    Quantum-Classical Reentrant Relaxation Crossover in Dy2Ti2O7 Spin-Ice

    Get PDF
    We have studied spin relaxation in the spin ice compound Dy2Ti2O7 through measurements of the a.c. magnetic susceptibility. While the characteristic spin relaxation time is thermally activated at high temperatures, it becomes almost temperature independent below Tcross ~ 13 K, suggesting that quantum tunneling dominates the relaxation process below that temperature. As the low-entropy spin ice state develops below Tice ~ 4 K, the spin relaxation time increases sharply with decreasing temperature, suggesting the emergence of a collective degree of freedom for which thermal relaxation processes again become important as the spins become highly correlated
    corecore