100 research outputs found

    TLR7 single-nucleotide polymorphisms in the 3' untranslated region and intron 2 independently contribute to systemic lupus erythematosus in Japanese women: a case-control association study

    Get PDF
    IntroductionThe Toll-like receptor 7 (TLR7) gene, encoded on human chromosome Xp22.3, is crucial for type I interferon production. A recent multicenter study in East Asian populations, comprising Chinese, Korean and Japanese participants, identified an association of a TLR7 single-nucleotide polymorphism (SNP) located in the 3\u27 untranslated region (3\u27 UTR), rs3853839, with systemic lupus erythematosus (SLE), especially in males, although some difference was observed among the tested populations. To test whether additional polymorphisms contribute to SLE in Japanese, we systematically analyzed the association of TLR7 with SLE in a Japanese female population.MethodsA case-control association study was conducted on eight tag SNPs in the TLR7 region, including rs3853839, in 344 Japanese females with SLE and 274 healthy female controls.ResultsIn addition to rs3853839, two SNPs in intron 2, rs179019 and rs179010, which were in moderate linkage disequilibrium with each other (r2 = 0.53), showed an association with SLE (rs179019: P = 0.016, odds ratio (OR) 2.02, 95% confidence interval (95% CI) 1.15 to 3.54; rs179010: P = 0.018, OR 1.75, 95% CI 1.10 to 2.80 (both under the recessive model)). Conditional logistic regression analysis revealed that the association of the intronic SNPs and the 3\u27 UTR SNP remained significant after we adjusted them for each other. When only the patients and controls carrying the risk genotypes at the 3\u27 UTR SNPpositionwere analyzed, the risk of SLE was significantly increased when the individuals also carried the risk genotypes at both of the intronic SNPs (P = 0.0043, OR 2.45, 95% CI 1.31 to 4.60). Furthermore, the haplotype containing the intronic risk alleles in addition to the 3\u27 UTR risk allele was associated with SLE under the recessive model (P = 0.016, OR 2.37, 95% CI 1.17 to 4.80), but other haplotypes were not associated with SLE.ConclusionsThe TLR7 intronic SNPs rs179019 and rs179010 are associated with SLE independently of the 3\u27 UTR SNP rs3853839 in Japanese women. Our findings support a role of TLR7 in predisposition for SLE in Asian populations

    Neonatal Plasma Polarizes TLR4-Mediated Cytokine Responses towards Low IL-12p70 and High IL-10 Production via Distinct Factors

    Get PDF
    Human neonates are highly susceptible to infection, which may be due in part to impaired innate immune function. Neonatal Toll-like receptor (TLR) responses are biased against the generation of pro-inflammatory/Th1-polarizing cytokines, yet the underlying mechanisms are incompletely defined. Here, we demonstrate that neonatal plasma polarizes TLR4-mediated cytokine production. When exposed to cord blood plasma, mononuclear cells (MCs) produced significantly lower TLR4-mediated IL-12p70 and higher IL-10 compared to MC exposed to adult plasma. Suppression by neonatal plasma of TLR4-mediated IL-12p70 production, but not induction of TLR4-mediated IL-10 production, was maintained up to the age of 1 month. Cord blood plasma conferred a similar pattern of MC cytokine responses to TLR3 and TLR8 agonists, demonstrating activity towards both MyD88-dependent and MyD88-independent agonists. The factor causing increased TLR4-mediated IL-10 production by cord blood plasma was heat-labile, lost after protein depletion and independent of lipoprotein binding protein (LBP) or soluble CD14 (sCD14). The factor causing inhibition of TLR4-mediated IL-12p70 production by cord blood plasma was resistant to heat inactivation or protein depletion and was independent of IL-10, vitamin D and prostaglandin E2. In conclusion, human neonatal plasma contains at least two distinct factors that suppress TLR4-mediated IL-12p70 production or induce IL-10 or production. Further identification of these factors will provide insight into the ontogeny of innate immune development and might identify novel targets for the prevention and treatment of neonatal infection

    Functional Complexity of the Axonal Growth Cone: A Proteomic Analysis

    Get PDF
    The growth cone, the tip of the emerging neurite, plays a crucial role in establishing the wiring of the developing nervous system. We performed an extensive proteomic analysis of axonal growth cones isolated from the brains of fetal Sprague-Dawley rats. Approximately 2000 proteins were identified at ≥99% confidence level. Using informatics, including functional annotation cluster and KEGG pathway analysis, we found great diversity of proteins involved in axonal pathfinding, cytoskeletal remodeling, vesicular traffic and carbohydrate metabolism, as expected. We also found a large and complex array of proteins involved in translation, protein folding, posttranslational processing, and proteasome/ubiquitination-dependent degradation. Immunofluorescence studies performed on hippocampal neurons in culture confirmed the presence in the axonal growth cone of proteins representative of these processes. These analyses also provide evidence for rough endoplasmic reticulum and reveal a reticular structure equipped with Golgi-like functions in the axonal growth cone. Furthermore, Western blot revealed the growth cone enrichment, relative to fetal brain homogenate, of some of the proteins involved in protein synthesis, folding and catabolism. Our study provides a resource for further research and amplifies the relatively recently developed concept that the axonal growth cone is equipped with proteins capable of performing a highly diverse range of functions

    Designing Bioactive Delivery Systems for Tissue Regeneration

    Get PDF
    The direct infusion of macromolecules into defect sites generally does not impart adequate physiological responses. Without the protection of delivery systems, inductive molecules may likely redistribute away from their desired locale and are vulnerable to degradation. In order to achieve efficacy, large doses supplied at interval time periods are necessary, often at great expense and ensuing detrimental side effects. The selection of a delivery system plays an important role in the rate of re-growth and functionality of regenerating tissue: not only do the release kinetics of inductive molecules and their consequent bioactivities need to be considered, but also how the delivery system interacts and integrates with its surrounding host environment. In the current review, we describe the means of release of macromolecules from hydrogels, polymeric microspheres, and porous scaffolds along with the selection and utilization of bioactive delivery systems in a variety of tissue-engineering strategies

    REVEL: An Ensemble Method for Predicting the Pathogenicity of Rare Missense Variants.

    Full text link
    The vast majority of coding variants are rare, and assessment of the contribution of rare variants to complex traits is hampered by low statistical power and limited functional data. Improved methods for predicting the pathogenicity of rare coding variants are needed to facilitate the discovery of disease variants from exome sequencing studies. We developed REVEL (rare exome variant ensemble learner), an ensemble method for predicting the pathogenicity of missense variants on the basis of individual tools: MutPred, FATHMM, VEST, PolyPhen, SIFT, PROVEAN, MutationAssessor, MutationTaster, LRT, GERP, SiPhy, phyloP, and phastCons. REVEL was trained with recently discovered pathogenic and rare neutral missense variants, excluding those previously used to train its constituent tools. When applied to two independent test sets, REVEL had the best overall performance (p < 10 -12 ) as compared to any individual tool and seven ensemble methods: MetaSVM, MetaLR, KGGSeq, Condel, CADD, DANN, and Eigen. Importantly, REVEL also had the best performance for distinguishing pathogenic from rare neutral variants with allele frequencies <0.5%. The area under the receiver operating characteristic curve (AUC) for REVEL was 0.046-0.182 higher in an independent test set of 935 recent SwissVar disease variants and 123,935 putatively neutral exome sequencing variants and 0.027-0.143 higher in an independent test set of 1,953 pathogenic and 2,406 benign variants recently reported in ClinVar than the AUCs for other ensemble methods. We provide pre-computed REVEL scores for all possible human missense variants to facilitate the identification of pathogenic variants in the sea of rare variants discovered as sequencing studies expand in scale

    Big data for bipolar disorder

    Get PDF

    The Doctrine of Specific Etiology

    Get PDF
    Modern medicine is often said to have originated with nineteenth century germ theory, which attributed diseases to bacterial contagions. The success of this theory is often associated with an underlying principle referred to as the “doctrine of specific etiology.” This doctrine refers to specificity at the level of disease causation or etiology. While the importance of this doctrine is frequently emphasized in the philosophical, historical, and medical literature, these sources lack a clear account of the types of specificity that it involves and why exactly they matter. This paper argues that the nineteenth century germ theory model involves two types of specificity at the level of etiology. One type receives significant attention in the literature, but its influence on modern medicine has been misunderstood. A second type is present in this model, but it has been completely overlooked in the extant literature. My analysis clarifies how these types of specificity led to a novel conception of etiology that continues to figure in medicine today
    corecore