1,464 research outputs found
The nature and origins of sub-Neptune size planets
Planets intermediate in size between the Earth and Neptune, and orbiting closer to their host stars than Mercury does the Sun, are the most common type of planet revealed by exoplanet surveys over the last quarter century. Results from NASA's Kepler mission have revealed a bimodality in the radius distribution of these objects, with a relative underabundance of planets between 1.5 and 2.0 urn:x-wiley:21699097:media:jgre21507:jgre21507-math-0001. This bimodality suggests that subâNeptunes are mostly rocky planets that were born with primary atmospheres a few percent by mass accreted from the protoplanetary nebula. Planets above the radius gap were able to retain their atmospheres (âgasârich superâEarthsâ), while planets below the radius gap lost their atmospheres and are stripped cores (âtrue superâEarthsâ). The mechanism that drives atmospheric loss for these planets remains an outstanding question, with photoevaporation and coreâpowered mass loss being the prime candidates. As with the massâloss mechanism, there are two contenders for the origins of the solids in subâNeptune planets: the migration model involves the growth and migration of embryos from beyond the ice line, while the drift model involves inwardâdrifting pebbles that coagulate to form planets closeâin. Atmospheric studies have the potential to break degeneracies in interior structure models and place additional constraints on the origins of these planets. However, most atmospheric characterization efforts have been confounded by aerosols. Observations with upcoming facilities are expected to finally reveal the atmospheric compositions of these worlds, which are arguably the first fundamentally new type of planetary object identified from the study of exoplanets
Stability of Mine Car Motion in Curves of Invariable and Variable Radii
We discuss our experiences adapting three recent algorithms for maximum common (connected) subgraph problems to exploit multi-core parallelism. These algorithms do not easily lend themselves to parallel search, as the search trees are extremely irregular, making balanced work distribution hard, and runtimes are very sensitive to value-ordering heuristic behaviour. Nonetheless, our results show that each algorithm can be parallelised successfully, with the threaded algorithms we create being clearly better than the sequential ones. We then look in more detail at the results, and discuss how speedups should be measured for this kind of algorithm. Because of the difficulty in quantifying an average speedup when so-called anomalous speedups (superlinear and sublinear) are common, we propose a new measure called aggregate speedup
Planetary Dynamics and Habitable Planet Formation In Binary Star Systems
Whether binaries can harbor potentially habitable planets depends on several
factors including the physical properties and the orbital characteristics of
the binary system. While the former determines the location of the habitable
zone (HZ), the latter affects the dynamics of the material from which
terrestrial planets are formed (i.e., planetesimals and planetary embryos), and
drives the final architecture of the planets assembly. In order for a habitable
planet to form in a binary star system, these two factors have to work in
harmony. That is, the orbital dynamics of the two stars and their interactions
with the planet-forming material have to allow terrestrial planet formation in
the habitable zone, and ensure that the orbit of a potentially habitable planet
will be stable for long times. We have organized this chapter with the same
order in mind. We begin by presenting a general discussion on the motion of
planets in binary stars and their stability. We then discuss the stability of
terrestrial planets, and the formation of potentially habitable planets in a
binary-planetary system.Comment: 56 pages, 29 figures, chapter to appear in the book: Planets in
Binary Star Systems (Ed. N. Haghighipour, Springer publishing company
Chemical Habitability: Supply and Retention of Life's Essential Elements During Planet Formation
This is the final version. Available from the Astronomical Society of the Pacific via the DOI in this recordASP Conference Series Vol. 534, Proceedings of a conference held 10-15 April 2023, Kyoto, JapanCarbon, Hydrogen, Nitrogen, Oxygen, Phosphorus and Sulfur (CHNOPS) play key roles in
the origin and proliferation of life on Earth. Given the universality of physics and chemistry,
not least the ubiquity of water as a solvent and carbon as a backbone of complex molecules,
CHNOPS are likely crucial to most habitable worlds. To help guide and inform the search
for potentially habitable and ultimately inhabited environments, we begin by summarizing
the CHNOPS budget of various reservoirs on Earth, their role in shaping our biosphere, and
their origins in the Solar Nebula. We then synthesize our current understanding of how these
elements behave and are distributed in diverse astrophysical settings, tracing their journeys from
synthesis in dying stars to molecular clouds, protoplanetary settings, and ultimately temperate
rocky planets around main sequence stars. We end by identifying key branching points during
this journey, highlighting instances where a forming planetsâ distribution of CHNOPS can be
altered dramatically, and speculating about the consequences for the chemical habitability of
these worlds.NASANational Science Foundation (NSF
Formation of Super-Earths
Super-Earths are the most abundant planets known to date and are
characterized by having sizes between that of Earth and Neptune, typical
orbital periods of less than 100 days and gaseous envelopes that are often
massive enough to significantly contribute to the planet's overall radius.
Furthermore, super-Earths regularly appear in tightly-packed multiple-planet
systems, but resonant configurations in such systems are rare. This chapters
summarizes current super-Earth formation theories. It starts from the formation
of rocky cores and subsequent accretion of gaseous envelopes. We follow the
thermal evolution of newly formed super-Earths and discuss their atmospheric
mass loss due to disk dispersal, photoevaporation, core-cooling and collisions.
We conclude with a comparison of observations and theoretical predictions,
highlighting that even super-Earths that appear as barren rocky cores today
likely formed with primordial hydrogen and helium envelopes and discuss some
paths forward for the future.Comment: Invited review accepted for publication in the 'Handbook of
Exoplanets,' Planet Formation section, Springer Reference Works, Juan Antonio
Belmonte and Hans Deeg, Ed
Mining and Characterization of Sequence Tagged Microsatellites from the Brown Planthopper Nilaparvata lugens
The brown planthopper, Nilaparvata lugens (StĂĽl) (Hemiptera: Delphacidae), is an important pest of rice. To better understand the migration pattern and population structure of the Chinese populations of N. lugens, we developed and characterized 12 polymorphic microsatellites from the expressed sequence tags database of N. lugens. The occurrence of these simple sequence repeats was assessed in three populations collected from three provinces of China. The number of alleles per locus ranged from 3 to 13 with an average of 6.5 alleles per locus. The mean observed heterozygosity of the three populations ranged from 0.051 to 0.772 and the expected heterozygosity ranged from 0.074 to 0.766. The sequences of the 12 markers were highly variable. The polymorphism information content of the 12 markers was high and ranged from 0.074 to 0.807 (mean = 0.503). Sequencing of microsatellite alleles revealed that the fragment length differences were mainly due to the variation of the repeat motif. Significant genetic differentiation was detected among the three N. lugens populations as the Fst ranged from 0.034 to 0.273. Principle coordinates analysis also revealed significant genetic differentiation between populations of different years. We conclude that these microsatellite markers will be a powerful tools to study the migration routine of the N. lugens
TRAPPIST-1: Global results of the Spitzer Exploration Science Program Red Worlds
With more than 1000 hours of observation from Feb 2016 to Oct 2019, the
Spitzer Exploration Program Red Worlds (ID: 13067, 13175 and 14223) exclusively
targeted TRAPPIST-1, a nearby (12pc) ultracool dwarf star orbited by seven
transiting Earth-sized planets, all well-suited for a detailed atmospheric
characterization with the upcoming JWST. In this paper, we present the global
results of the project. We analyzed 88 new transits and combined them with 100
previously analyzed transits, for a total of 188 transits observed at 3.6 or
4.5 m. We also analyzed 29 occultations (secondary eclipses) of planet b
and eight occultations of planet c observed at 4.5 m to constrain the
brightness temperatures of their daysides. We identify several orphan
transit-like structures in our Spitzer photometry, but all of them are of low
significance. We do not confirm any new transiting planets. We estimate for
TRAPPIST-1 transit depth measurements mean noise floors of 35 and 25 ppm
in channels 1 and 2 of Spitzer/IRAC, respectively. most of this noise floor is
of instrumental origins and due to the large inter-pixel inhomogeneity of IRAC
InSb arrays, and that the much better interpixel homogeneity of JWST
instruments should result in noise floors as low as 10ppm, which is low enough
to enable the atmospheric characterization of the planets by transit
transmission spectroscopy. We construct updated broadband transmission spectra
for all seven planets which show consistent transit depths between the two
Spitzer channels. We identify and model five distinct high energy flares in the
whole dataset, and discuss our results in the context of habitability. Finally,
we fail to detect occultation signals of planets b and c at 4.5 m, and can
only set 3 upper limits on their dayside brightness temperatures (611K
for b 586K for c)
- âŚ