24 research outputs found

    Assessing weight perception accuracy to promote weight loss among U.S. female adolescents: A secondary analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Overweight and obesity have become a global epidemic. The prevalence of overweight and obesity among U.S. adolescents has almost tripled in the last 30 years. Results from recent systematic reviews demonstrate that no single, particular intervention or strategy successfully assists overweight or obese adolescents in losing weight. An understanding of factors that influence healthy weight-loss behaviors among overweight and obese female adolescents promotes effective, multi-component weight-loss interventions. There is limited evidence demonstrating associations between demographic variables, body-mass index, and weight perception among female adolescents trying to lose weight. There is also a lack of previous studies examining the association of the accuracy of female adolescents' weight perception with their efforts to lose weight. This study, therefore, examined the associations of body-mass index, weight perception, and weight-perception accuracy with trying to lose weight and engaging in exercise as a weight-loss method among a representative sample of U.S. female adolescents.</p> <p>Methods</p> <p>A nonexperimental, descriptive, comparative secondary analysis design was conducted using data from Wave II (1996) of the National Longitudinal Study of Adolescent Health (Add Health). Data representative of U.S. female adolescents (N = 2216) were analyzed using STATA statistical software. Descriptive statistics and survey weight logistic regression were performed to determine if demographic and independent (body-mass index, weight perception, and weight perception accuracy) variables were associated with trying to lose weight and engaging in exercise as a weight-loss method.</p> <p>Results</p> <p>Age, Black or African American race, body-mass index, weight perception, and weight perceptions accuracy were consistently associated with the likeliness of trying to lose weight among U.S. female adolescents. Age, body-mass index, weight perception, and weight-perception accuracy were positively associated (<it>p </it>< 0.05) with trying to lose weight. Black/African American subjects were significantly less likely than their White counterparts to be trying to lose weight. There was no association between demographic or independent variables and engaging in exercise as a weight-loss method.</p> <p>Conclusions</p> <p>Findings suggest that factors influencing weight-loss efforts, including age, race, body-mass index, weight perception, and weight-perception accuracy, should be incorporated into existing or new multi-component weight-loss interventions for U.S. adolescent females in order to help reduce the national epidemic of overweight and obesity among U.S. female adolescents.</p

    Hung Out to Dry: Choice of Priority Ecoregions for Conserving Threatened Neotropical Anurans Depends on Life-History Traits

    Get PDF
    Background: In the Neotropics, nearly 35 % of amphibian species are threatened by habitat loss, habitat fragmentation, and habitat split; anuran species with different developmental modes respond to habitat disturbance in different ways. This entails broad-scale strategies for conserving biodiversity and advocates for the identification of high conservation-value regions that are significant in a global or continental context and that could underpin more detailed conservation assessments towards such areas. Methodology/Principal Findings: We identified key ecoregion sets for anuran conservation using an algorithm that favors complementarity (beta-diversity) among ecoregions. Using the WWF’s Wildfinder database, which encompasses 700 threatened anuran species in 119 Neotropical ecoregions, we separated species into those with aquatic larvae (AL) or terrestrial development (TD), as this life-history trait affects their response to habitat disturbance. The conservation target of 100 % of species representation was attained with a set of 66 ecoregions. Among these, 30 were classified as priority both for species with AL and TD, 26 were priority exclusively for species with AL, and 10 for species with TD only. Priority ecoregions for both developmental modes are concentrated in the Andes and in Mesoamerica. Ecoregions important for conserving species with AL are widely distributed across the Neotropics. When anuran life histories were ignored, species with AL were always underrepresented in priority sets

    Current and Future Niche of North and Central American Sand Flies (Diptera: Psychodidae) in Climate Change Scenarios

    Get PDF
    Ecological niche models are useful tools to infer potential spatial and temporal distributions in vector species and to measure epidemiological risk for infectious diseases such as the Leishmaniases. The ecological niche of 28 North and Central American sand fly species, including those with epidemiological relevance, can be used to analyze the vector’s ecology and its association with transmission risk, and plan integrated regional vector surveillance and control programs. In this study, we model the environmental requirements of the principal North and Central American phlebotomine species and analyze three niche characteristics over future climate change scenarios: i) potential change in niche breadth, ii) direction and magnitude of niche centroid shifts, iii) shifts in elevation range. Niche identity between confirmed or incriminated Leishmania vector sand flies in Mexico, and human cases were analyzed. Niche models were constructed using sand fly occurrence datapoints from Canada, USA, Mexico, Guatemala and Belize. Nine non-correlated bioclimatic and four topographic data layers were used as niche components using GARP in OpenModeller. Both B2 and A2 climate change scenarios were used with two general circulation models for each scenario (CSIRO and HadCM3), for 2020, 2050 and 2080. There was an increase in niche breadth to 2080 in both scenarios for all species with the exception of Lutzomyia vexator. The principal direction of niche centroid displacement was to the northwest (64%), while the elevation range decreased greatest for tropical, and least for broad-range species. Lutzomyia cruciata is the only epidemiologically important species with high niche identity with that of Leishmania spp. in Mexico. Continued landscape modification in future climate change will provide an increased opportunity for the geographic expansion of NCA sand flys’ ENM and human exposure to vectors of Leishmaniases

    Population genomics of marine zooplankton

    Get PDF
    Author Posting. © The Author(s), 2017. This is the author's version of the work. It is posted here for personal use, not for redistribution. The definitive version was published in Bucklin, Ann et al. "Population Genomics of Marine Zooplankton." Population Genomics: Marine Organisms. Ed. Om P. Rajora and Marjorie Oleksiak. Springer, 2018. doi:10.1007/13836_2017_9.The exceptionally large population size and cosmopolitan biogeographic distribution that distinguish many – but not all – marine zooplankton species generate similarly exceptional patterns of population genetic and genomic diversity and structure. The phylogenetic diversity of zooplankton has slowed the application of population genomic approaches, due to lack of genomic resources for closelyrelated species and diversity of genomic architecture, including highly-replicated genomes of many crustaceans. Use of numerous genomic markers, especially single nucleotide polymorphisms (SNPs), is transforming our ability to analyze population genetics and connectivity of marine zooplankton, and providing new understanding and different answers than earlier analyses, which typically used mitochondrial DNA and microsatellite markers. Population genomic approaches have confirmed that, despite high dispersal potential, many zooplankton species exhibit genetic structuring among geographic populations, especially at large ocean-basin scales, and have revealed patterns and pathways of population connectivity that do not always track ocean circulation. Genomic and transcriptomic resources are critically needed to allow further examination of micro-evolution and local adaptation, including identification of genes that show evidence of selection. These new tools will also enable further examination of the significance of small-scale genetic heterogeneity of marine zooplankton, to discriminate genetic “noise” in large and patchy populations from local adaptation to environmental conditions and change.Support was provided by the US National Science Foundation to AB and RJO (PLR-1044982) and to RJO (MCB-1613856); support to IS and MC was provided by Nord University (Norway)

    Comparative safety of serotonin (5-HT3) receptor antagonists in patients undergoing surgery: a systematic review and network meta-analysis

    Get PDF

    Adaptation of a widespread epiphytic fern to simulated climate change conditions

    No full text
    The response of species to climate change is generally studied using ex situ manipulation of microclimate or by modeling species range shifts under simulated climate scenarios. In contrast, a reciprocal transplant experiment was used to investigate the in situ adaptive response of the elevationally widespread epiphytic fern Asplenium antiquum to simulated climate change conditions. Fern spores were collected at three elevations and germinated in a greenhouse. The sporelings (juvenile ferns) were reciprocally transplanted to each collection site. Growth and mortality rates were monitored for 2 years. Wild sporelings were monitored at two sites to assess possible transplant effects. Habitat suitability, indicated by overall growth and survival patterns, declined as elevation increased. Only the highland population showed significant adaptation to the ‘‘home’’ habitat, achieving the highest survival rates. Microclimate data suggest that the presumed genetic adaptation at the highland site occurred mainly in response to drought stress in winter. Based on our previous study on species distribution models, which projected an expansion in the range of A. antiquum under future climate change scenarios, the populations at the upper margins of the species’ elevational range may play an important role during this expansion, given their better adaptation to the shifting marginal conditions. Our study suggests that infraspecific variation should be considered when determining the potential impact of climate change on biodiversity
    corecore