1,983 research outputs found

    On vortex/wave interactions. Part 2. Originating from axisymmetric flow with swirl

    Get PDF
    Following the study in Part 1 of cross-flow and other non-symmetric effects on vortex/wave interactions in boundary layers, the present Part 2 applies the ideas of Part 1 and related works to an incident axisymmetric flow supplemented by a small swirl or azimuthal velocity. This is with a view to possibly increasing understanding of vortex breakdown. The wave components involved are predominantly inviscid Rayleigh-like ones. The presence of the swirl leads to extra features and complications associated mainly with extra logarithmic contributions but for the dominant interactions essentially the same equations as in Part 1 are found. These dominant nonlinear interactions must be based on azimuthal wavenumbers of +/-1 in the case of the Squire jet with swirl. In contrast to Part 1, which consisted mainly of an analysis of the quasi-bounded solutions, a representative set of numerical solutions of the full integro-differential amplitude equations is presented, for realistic axial and swirl velocity profiles. The work points also to the influence of further increases in the incident swirl

    Comparison of Different Boost Transformations for the Calculation of Form Factors in Relativistic Quantum Mechanics

    Get PDF
    The effect of different boost expressions, pertinent to the instant, front and point forms of relativistic quantum mechanics, is considered for the calculation of the ground-state form factor of a two-body system in simple scalar models. Results with a Galilean boost as well as an explicitly covariant calculation based on the Bethe-Salpeter approach are given for comparison. It is found that the present so-called point-form calculations of form factors strongly deviate from all the other ones. This suggests that the formalism which underlies them requires further elaboration. A proposition in this sense is made.Comment: Invited talk given at the 18th European Conference on Few-Body Problems in Physics, Bled, Slovenia, 8-14 Sep 2002. Submitted to Few Body Syst.Supp

    Nonlinear evolution of Rayleigh waves in an initial value context: Non-symmetric input and cross-flow

    Get PDF
    In recent papers the present authors considered the effects of small cross-flow on the evolution of two unequal oblique waves. In these studies the relative size of the crossflow meant that a diffusion (or buffer) layer was required around the critical layer to smooth out the algebraic growth in the mean-flow distortion generated by the nonlinear critical-layer interactions. The present analysis increases the cross-flow to an order of magnitude such that the buffer and critical layers coalesce. In this instance the nonlinear critical layer contains viscous as well as nonequilibrium effects. The resulting amplitude equations are solved for perturbations initiated at a fixed station in the flow

    Panarchy use in environmental science for risk and resilience planning

    Get PDF
    Environmental sciences have an important role in informing sustainable management of built environments by providing insights about the drivers and potentially negative impacts of global environmental change. Here, we discuss panarchy theory, a multi-scale hierarchical concept that accounts for the dynamism of complex socio-ecological systems, especially for those systems with strong cross-scale feedbacks. The idea of panarchy underlies much of system resilience, focusing on how systems respond to known and unknown threats. Panarchy theory can provide a framework for qualitative and quantitative research and application in the environmental sciences, which can in turn inform the ongoing efforts in sociotechnical resilience thinking and adaptive and transformative approaches to managemen

    Constraint

    Get PDF
    International audienceConstraint refers to a reduction of the degrees of freedom of the elements of a system exerted by some collection of elements, or a limitation or bias on the variability or possibilities of change in the kind of such elements

    The Filter Detection Task for measurement of breathing-related interoception and metacognition

    Get PDF
    The study of the brain’s processing of sensory inputs from within the body (‘interoception’) has been gaining rapid popularity in neuroscience, where interoceptive disturbances are thought to exist across a wide range of chronic physiological and psychological conditions. Here we present a task and analysis procedure to quantify specific dimensions of breathing-related interoception, including interoceptive sensitivity, decision bias, metacognitive bias, and metacognitive performance. Two major developments address some of the challenges presented by low trial numbers in interoceptive experiments: (i) a novel adaptive algorithm to maintain task performance at 70–75% accuracy; (ii) an extended hierarchical metacognitive model to estimate regression parameters linking metacognitive performance to relevant (e.g. clinical) variables. We demonstrate the utility of the task and analysis developments, using both simulated data and three empirical datasets. This methodology represents an important step towards accurately quantifying interoceptive dimensions from a simple experimental procedure that is compatible with clinical settings

    MicroRNA159 Can Act as a Switch or Tuning MicroRNA Independently of Its Abundance in Arabidopsis

    Get PDF
    The efficacy of gene silencing by plant microRNAs (miRNAs) is generally assumed to be predominantly determined by their abundance. In Arabidopsis the highly abundant miRNA, miR159, acts as a molecular “switch” in vegetative tissues completely silencing the expression of two GAMYB-like genes, MYB33 and MYB65. Here, we show that miR159 has a diminished silencing efficacy in the seed. Using reporter gene constructs, we determined that MIR159 and MYB33 are co-transcribed in the aleurone and embryo of germinating seeds. However in contrast to vegetative tissues, MYB33 is not completely silenced. Instead, miR159 appears to shape the spatio-temporal expression pattern of MYB33 during seed germination. Transcript profiling in a time course during seed germination in wild-type and a mir159 mutant in which miR159 is almost absent, revealed that transcript levels of the GAMYB-like genes were similar between these two genotypes during germination, but much higher in the mir159 mutant once germination had completed. This attenuation in the silencing of the GAMYB-like genes was not explained by a decrease in mature miR159 levels, which remained constant at all time points during seed germination. We propose that miR159 acts as a tuner of GAMYB-like levels in Arabidopsis germinating seeds and that the activity of this miRNA is attenuated in the seed compared to vegetative tissues. This implies that the efficacy of miRNA-mediated silencing is not solely determined by miRNA abundance and target transcript levels, but is being determined through additional mechanisms

    Ptch2/Gas1 and Ptch1/Boc differentially regulate Hedgehog signalling in murine primordial germ cell migration.

    Get PDF
    Gas1 and Boc/Cdon act as co-receptors in the vertebrate Hedgehog signalling pathway, but the nature of their interaction with the primary Ptch1/2 receptors remains unclear. Here we demonstrate, using primordial germ cell migration in mouse as a developmental model, that specific hetero-complexes of Ptch2/Gas1 and Ptch1/Boc mediate the process of Smo de-repression with different kinetics, through distinct modes of Hedgehog ligand reception. Moreover, Ptch2-mediated Hedgehog signalling induces the phosphorylation of Creb and Src proteins in parallel to Gli induction, identifying a previously unknown Ptch2-specific signal pathway. We propose that although Ptch1 and Ptch2 functionally overlap in the sequestration of Smo, the spatiotemporal expression of Boc and Gas1 may determine the outcome of Hedgehog signalling through compartmentalisation and modulation of Smo-downstream signalling. Our study identifies the existence of a divergent Hedgehog signal pathway mediated by Ptch2 and provides a mechanism for differential interpretation of Hedgehog signalling in the germ cell niche

    Laguerre-Gaussian wave propagation in parabolic media

    Full text link
    We report a new set of Laguerre-Gaussian wave-packets that propagate with periodical self-focusing and finite beam width in weakly guiding inhomogeneous media. These wave-packets are solutions to the paraxial form of the wave equation for a medium with parabolic refractive index. The beam width is defined as a solution of the Ermakov equation associated to the harmonic oscillator, so its amplitude is modulated by the strength of the medium inhomogeneity. The conventional Laguerre-Gaussian modes, available for homogenous media, are recovered as a particular case.Comment: 11 pages, 5 figure
    • 

    corecore