857 research outputs found

    Three-dimensional rotating Couette flow via the generalised quasilinear approximation

    Get PDF
    We examine the effectiveness of the generalised quasilinear (GQL) approximation introduced by Marston et al. (Phys. Rev. Lett., vol. 116 (21), 2016, 214501). This approximation splits the variables into large and small scales in directions where there is a translational symmetry and removes nonlinear interactions involving only small scales. We utilise as a paradigm problem three-dimensional, turbulent, rotating Couette flow. We compare the results obtained from direct numerical solution of the equations with those from quasilinear (QL) and GQL calculations. In this three-dimensional setting, there is a choice of cutoff wavenumber for the GQL approximation both in the streamwise and in the spanwise directions. We demonstrate that the GQL approximation significantly improves the accuracy of mean flows, spectra and two-point correlation functions over models that are quasilinear in any of the translationally invariant directions, even if only a few streamwise and spanwise modes are included. We argue that this provides significant support for a programme of direct statistical simulation utilising the GQL approximation

    Convection-driven kinematic dynamos with a self-consistent shear flow

    Get PDF
    This is the final version. Available on open access from Taylor & Francis via the DOI in this recordIt is widely accepted that astrophysical magnetic fields are generated by dynamo action. In many cases, these fields exhibit organisation on a scale larger than that of the underlying turbulent flow (e.g. the 11-year solar cycle). The mechanism for the generation of so-called large-scale fields remains an open problem. In cases where the magnetic Reynolds number (Rm) is small, dynamo-generated fields are coherent but at (the astrophysically relevant) high Rm, the fields are overwhelmed by small-scale fluctuating field. Recently Tobias and Cattaneo have shown that an imposed large-scale shear flow can suppress the small-scale fluctuations and allow the large-scale temporal behaviour to emerge. Shear is also believed to modify the electromotive force by introducing correlations between the flow and the field. However, in previous models at high Rm the shear is often artificially imposed or driven by an arbitrary body force. Here we consider a simple kinematic model of a convective dynamo in which shear is self-consistently driven by the presence of a horizontal temperature gradient (resulting in a thermal wind) and a rotation vector that is oblique to gravity. By considering a 2.5-dimensional system, we are able to reach high Rm so that the dynamo approaches the asymptotic regime where the growth rate becomes approximately independent of Rm. We find the flows studied here to be excellent small-scale dynamos, but with very little systematic behaviour evident at large Rm. We attribute this to being unable to self-consistently generate flows with both large (net) helicity and strong shear in this setup.LKC acknowledges support from the European Research Council under ERC grant agreements No. 337705 (CHASM). SMT is supported by STFC grant: ST/N000765/1. SMT would also like to acknowledge The Leverhulme Trust for the award of a Research Fellowship. The simulations here were carried out on the University of Exeter supercomputer, a DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS and the University of Exeter. This work used the DiRAC Complexity system, operated by the University of Leicester IT Services, which forms part of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment is funded by BIS National E-Infrastructure capital grant ST/K000373/1 and STFC DiRAC Operations grant ST/K0003259/1. DiRAC is part of the National E-Infrastructure

    Generation of shear flows and vortices in rotating anelastic convection

    Get PDF
    We consider the effect of stratification on systematic large-scale flows generated in anelastic convection. We present results from three-dimensional numerical simulations of convection in a rotating plane layer in which the angle between the axis of rotation and gravity is allowed to vary. This model is representative of different latitudes of a spherical body. We consider two distinct parameter regimes: (i) weakly rotating and (ii) rapidly rotating. In each case, we examine the effect of stratification on the flow structure and heat transport properties focusing on the difference between Boussinesq and anelastic convection. Furthermore, we show that regimes (i) and (ii) generate very different large-scale flows and we investigate the role stratification has in modifying these flows. The stratified flows possess a net helicity not present in the Boussinesq cases which we suggest, when combined with the self-generated shear flows, could be important for dynamo action

    On long-term modulation of the Sun’s magnetic cycle

    Get PDF
    We utilize reconstructions based on cosmogenic radionuclides as well as direct observations of solar magnetic activity, to argue that the solar dynamo has operated similarly to the present day for at least the past 10 000 yr. The persistence of the 87-yr Gleissberg cycle throughout supermodulation events suggests that the Hale and Schwabe cycles continue independently of the modulational mechanism for activity. We further analyse behaviour of solar activity during the Spörer and Maunder Minima. Such grand minima recur with the characteristic de Vries period of approximately 208 yr but their incidence is modulated by the Hallstatt cycle with a characteristic period of around 2300 yr.We ascribe the latter to supermodulation, caused by breaking the symmetry of the dynamo pattern. Finally, we emphasize the need for further calculations in order to determine the effects of changes in solar field morphology and symmetry on the solar wind and on cosmic ray deflection

    Angular momentum transport, layering, and zonal jet formation by the GSF instability: non-linear simulations at a general latitude

    Get PDF
    We continue our investigation into the non-linear evolution of the Goldreich–Schubert–Fricke (GSF) instability in differentially rotating radiation zones. This instability may be a key player in transporting angular momentum in stars and giant planets, but its non-linear evolution remains mostly unexplored. In a previous paper we considered the equatorial instability, whereas here we simulate the instability at a general latitude for the first time. We adopt a local Cartesian Boussinesq model in a modified shearing box for most of our simulations, but we also perform some simulations with stress-free, impenetrable, radial boundaries. We first revisit the linear instability and derive some new results, before studying its non-linear evolution. The instability is found to behave very differently compared with its behaviour at the equator. In particular, here we observe the development of strong zonal jets (‘layering’ in the angular momentum), which can considerably enhance angular momentum transport, particularly in axisymmetric simulations. The jets are, in general, tilted with respect to the local gravity by an angle that corresponds initially with that of the linear modes, but which evolves with time and depends on the strength of the flow. The instability transports angular momentum much more efficiently (by several orders of magnitude) than it does at the equator, and we estimate that the GSF instability could contribute to the missing angular momentum transport required in both red giant and subgiant stars. It could also play a role in the long-term evolution of the solar tachocline and the atmospheric dynamics of hot Jupiters

    A Multiscale Dynamo Model Driven by Quasi-geostrophic Convection

    Get PDF
    A convection-driven multiscale dynamo model is developed in the limit of low Rossby number for the plane layer geometry in which the gravity and rotation vectors are aligned. The small-scale fluctuating dynamics are described by a magnetically-modified quasi-geostrophic equation set, and the large-scale mean dynamics are governed by a diagnostic thermal wind balance. The model utilizes three timescales that respectively characterize the convective timescale, the large-scale magnetic evolution timescale, and the large-scale thermal evolution timescale. Distinct equations are derived for the cases of order one and low magnetic Prandtl number. It is shown that the low magnetic Prandtl number model is characterized by a magnetic to kinetic energy ratio that is asymptotically large, with ohmic dissipation dominating viscous dissipation on the large-scales. For the order one magnetic Prandtl number model the magnetic and kinetic energies are equipartitioned and both ohmic and viscous dissipation are weak on the large-scales; large-scale ohmic dissipation occurs in thin magnetic boundary layers adjacent to the horizontal boundaries. For both magnetic Prandtl number cases the Elsasser number is small since the Lorentz force does not enter the leading order force balance. The new models can be considered fully nonlinear, generalized versions of the dynamo model originally developed by Childress and Soward [Phys. Rev. Lett., 29, p.837, 1972], and provide a new theoretical framework for understanding the dynamics of convection-driven dynamos in regimes that are only just becoming accessible to direct numerical simulations

    What is a large-scale dynamo?

    Get PDF
    We consider kinematic dynamo action in a sheared helical flow at moderate to high values of the magnetic Reynolds number Rm. We find exponentially growing solutions which, for large enough shear, take the form of a coherent part embedded in incoherent fluctuations. We argue that at large Rm large-scale dynamo action should be identified by the presence of structures coherent in time, rather than those at large spatial scales. We further argue that although the growth-rate is determined by small-scale processes, the period of the coherent structures is set by mean-field considerations

    Topological Gaseous Plasmon Polariton in Realistic Plasma

    Get PDF
    Nontrivial topology in bulk matter has been linked with the existence of topologically protected interfacial states. We show that a gaseous plasmon polariton (GPP), an electromagnetic surface wave existing at the boundary of magnetized plasma and vacuum, has a topological origin that arises from the nontrivial topology of magnetized plasma. Because a gaseous plasma cannot sustain a sharp interface with discontinuous density, one must consider a gradual density falloff with scale length comparable to or longer than the wavelength of the wave. We show that the GPP may be found within a gapped spectrum in present-day laboratory devices, suggesting that platforms are currently available for experimental investigation of topological wave physics in plasmas

    Downward pumping of magnetic flux as the cause of filamentary structures in sunspot penumbrae

    Get PDF
    The structure of a sunspot is determined by the local interaction between magnetic fields and convection near the Sun's surface. The dark central umbra is surrounded by a filamentary penumbra, whose complicated fine structure has only recently been revealed by high-resolution observations. The penumbral magnetic field has an intricate and unexpected interlocking-comb structure and some field lines, with associated outflows of gas, dive back down below the solar surface at the outer edge of the spot. These field lines might be expected to float quickly back to the surface because of magnetic buoyancy, but they remain submerged. Here we show that the field lines are kept submerged outside the spot by turbulent, compressible convection, which is dominated by strong, coherent, descending plumes. Moreover, this downward pumping of magnetic flux explains the origin of the interlocking-comb structure of the penumbral magnetic field, and the behaviour of other magnetic features near the sunspot

    Scale Selection in the Stratified Convection of the Solar Photosphere

    Get PDF
    We examine the role of stratification in determining the length scales of turbulent anelastic convection. Motivated by the range of scales observed in convection at the solar photosphere, we perform local numerical simulations of convection for a range of density contrasts in large domains, analyzing both the Eulerian and Lagrangian statistics of the flow. We consider the two cases of constant dynamic viscosity and constant kinematic viscosity. We discuss the implications of our results to the issue of solar mesogranulation
    • …
    corecore