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ABSTRACT
It is widely accepted that astrophysicalmagnetic fields are generated
by dynamo action. In many cases, these fields exhibit organisation
on a scale larger than that of the underlying turbulent flow (e.g.
the 11-year solar cycle). The mechanism for the generation of so-
called large-scale fields remains an open problem. In cases where
the magnetic Reynolds number (Rm) is small, dynamo-generated
fields are coherent but at (the astrophysically relevant) high Rm,
the fields are overwhelmed by small-scale fluctuating field. Recently
Tobias and Cattaneo have shown that an imposed large-scale shear
flow can suppress the small-scale fluctuations and allow the large-
scale temporal behaviour to emerge. Shear is also believed tomodify
the electromotive force by introducing correlations between the
flow and the field. However, in previous models at high Rm the
shear is often artificially imposed or driven by an arbitrary body
force. Here we consider a simple kinematic model of a convective
dynamo in which shear is self-consistently driven by the presence
of a horizontal temperature gradient (resulting in a thermal wind)
and a rotation vector that is oblique to gravity. By considering a 2.5-
dimensional system,weare able to reachhighRm so that thedynamo
approaches the asymptotic regime where the growth rate becomes
approximately independent of Rm. We find the flows studied here
to be excellent small-scale dynamos, but with very little systematic
behaviour evident at large Rm. We attribute this to being unable
to self-consistently generate flows with both large (net) helicity and
strong shear in this setup.
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1. Introduction

Astrophysical magnetic fields often exhibit a remarkable degree of order despite the high
levels of turbulence. From planets to galaxy clusters – via stars, disks and galaxies – system-
atic magnetic fields are often observed (Parker 1979; Moffatt 1978), yet no self-consistent
theory for their generation is currently agreed upon. It is generally accepted though that
these magnetic fields are maintained by dynamo action, where inductive processes within
the body overcome the ohmic diffusion (Tobias et al. 2011). Moreover, it seems to be
possible for dynamo action to be efficient even at the astrophysically relevant parameter
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regime of high magnetic Reynolds number Rm = UL/η, whereU is a characteristic veloc-
ity, L a typical length scale and η the magnetic diffusivity of the medium (Childress and
Gilbert 1995); typically Rm = O(108) in stars and even higher in galaxies.

A central issue is that, although dynamos can and do work at high Rm, all other
things being equal their natural tendency is to generate magnetic field on a small (fluc-
tuation) length-scale given by l ∼ Rm−1/2Lu, where Lu is a characteristic length scale
for a velocity eddy (Tobias and Cattaneo 2008). The field produced tends to be ran-
dom and small scale rather than having systematic behaviour in either space or time
like those observed in astrophysical objects. So how do systematic fields emerge? Argu-
ments that go back to Parker (1955), which were formalised by Steenbeck et al. (1966)
and Krause and Raedler (1980) as mean-field electrodynamics, demonstrate that sys-
tematic fields can only emerge owing to correlations between the flow and magnetic
field that themselves emerge owing to breaking of reflectional symmetry in the system
(see also Moffatt 1978). This breaking of symmetry is often characterised in terms of
the degree of kinetic helicity in the system. In general, because most astrophysical bod-
ies are rotating and stratified, reflectional symmetry is naturally broken (Brandenburg
and Subramanian 2005) and correlations and therefore systematic fields are expected to
emerge.

In order to generate a tractable theory, mean field electrodynamics is completely formu-
lated within a kinematic framework, where the velocity u is prescribed and solutions for the
magnetic field B are exponentially growing or decaying. The correlations discussed above
emerge through a formally linear electromotive force (emf) given by E = 〈u × b〉 where
angle brackets represent a spatial, temporal or ensemble average (Dormy and Soward 2007)
and b is the fluctuation of the magnetic field about that average. However, theoretical con-
siderations and numerical calculations seem to suggest that at high Rm the systematic
magnetic field generated by the correlations in the emfmay be swamped by the fluctuations
that are inherent to turbulent dynamos (Cattaneo and Hughes 2006). There has therefore
been much effort to understand under what circumstances the systematic behaviour can
win out over the fluctuations. Within the kinematic framework (with which this paper
is concerned – we shall return to nonlinear considerations in the conclusions), it has been
suggested that the presence of a large-scale shear flow (a natural flow inmany astrophysical
fluids) could remedy the natural tendency of the fluctuation dynamo to triumph over the
systematic dynamo (Tobias and Cattaneo 2013). There are twomechanisms that have been
proposed by which this may be achieved. The first is that the shear flow enhances the cor-
relations between the flow and the field leading to the production of a net emf, thus helping
the large-scale dynamo. There are many papers (Yousef et al. 2008; Käpylä and Branden-
burg 2009; Sridhar and Singh 2010) that demonstrate this effect for imposed shear flows
and turbulence at low Rm and attempt to characterise the nature of the new correlations
by relating them back to the large-scale field via transport coefficients (this is possible in
a purely kinematic/linear framework). The second route by which the systematic dynamo
may win out is for the shear to remove the turbulent fluctuations of the magnetic field
without having a significant effect on the correlations that lead to the systematic dynamo.
In a series of papers (Tobias and Cattaneo 2013, 2015; Nigro et al. 2017), it has been shown
that, for a range of model (2.5-dimensional) flows at high Rm, the primary effect of a shear
flow is to reduce the growth rate of the fluctuation dynamo (leaving the mean emf largely
unaffected). For flowswith enough breaking of reflectional symmetry (characterised by net
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helicity in the flow), this can lead to the unambiguous observation of systematic dynamo
action (indeed oscillatory dynamo action) at high Rm.

In the papers described earlier, the role of shear was investigated for shear flows
imposedwith a prescribed strength. In astrophysical situations, the shear flows usually self-
consistently emerge via the interaction of turbulence with rotation leading to correlations
in the flow (see e.g. Brun and Browning 2017, and the references therein). This situation is
much less widely studied at highRm, though of course there are a large number of spherical
convection dynamos that are investigated at lowerRmwhere differential rotation andmag-
netic fields emerge self-consistently (Passos andCharbonneau 2014;Augustson et al. 2015).
In this paper, we consider a simple model of the interaction of convection with rotation
leading to shear flows and dynamo action in order to characterise under what circum-
stances (if any) systematic dynamo action emerges. Our model is similar in spirit, though
different from that considered by Ponty et al. (2001), which described the interaction of
convection and dynamos with an Ekman spiral flow.

2. Model setup

We consider a plane layer of height d of Boussinesq fluid rotating about an axis that is
oblique to gravity. We assume that gravity g = (0, 0,−g) is constant and acts in the neg-
ative z (downwards) direction, with x pointing eastwards and y northwards. The rotation
vector lies in the y–z plane and is given by � = �(0, cosφ, sinφ), where � is the rotation
rate and φ is the latitude. Throughout this paper, we will consider 0 < φ ≤ π/2 so that
this local model is representative of a region at latitude φ in the northern hemisphere of a
spherical body hence when φ = π/2, the rotation is vertical. Convection is driven through
an adverse vertical temperature gradient and in addition, an imposed temperature gradient
in the y direction produces a thermal wind shear (Hathaway et al. 1980). In this case, the
dimensionless temperature basic state is given by

T0 = Tc + Tyy − z, (1)

where (∂T/∂z)d has been used as the characteristic unit of temperature and d the charac-
teristic unit of length. Tc is a constant and Ty is a dimensionless measure of the horizontal
temperature gradient. For Ty < 0, the temperature increases southwards (equatorwards),
as is the case on Earth, for example. In this paper, we restrict our attention to this case and
do not consider what happens when Ty > 0. A poleward pressure gradient is produced by
the horizontal temperature gradient and is balanced by the Coriolis force acting on a ther-
mal wind, this leads to a velocity basic state with vertical shear (the thermal wind) and is
given by U0 = (U0(z), 0, 0), where (Hathaway et al. 1980)

U0 = − TyRa
Ta1/2 sinφ

(
z − 1

2
)
, (2)

for φ �= 0. This expression involves the following standard dimensionless numbers: the
Rayleigh number Ra= αgd4∂T/∂z/κν and the Taylor number Ta = 4�2d4/ν2, where α

is the coefficient of thermal expansion, and κ and ν are the thermal and viscous diffusivi-
ties respectively. Such a hydrodynamic system can drive a flow u which may or may not be
capable of generating a magnetic field through dynamo action. We determine if any mag-
netic field B = (Bx,By,Bz) is generated from the resulting flows by solving the induction
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equation. Here, we only consider the kinematic dynamo problem and do not account for
any back reaction of the field on the flow.We consider velocity perturbations u and temper-
ature perturbations θ to the basic state given by (1) and (2). In this case, the dimensionless
governing equations are given by (see e.g. Currie 2014)

∇·u = 0, (3)

∂u
∂t

+ U0
∂u
∂x

+ w
dU0

dz
− Pr∇2u + Ta1/2Pr� × u + Pr∇p − RaPrθ êz

= −(u·∇)u, (4)

∂θ

∂t
+ U0

∂θ

∂x
− ∇2θ − w + Tyv = −(u·∇)θ , (5)

∇·B = 0, (6)

∂B
∂t

− ζ∇2B − ∇ × (U0 × B) = ∇ × (u × B), (7)

where p denotes the pressure perturbation. We have used the thermal diffusion time d2/κ
as the characteristic unit of time; velocities therefore have a typical scale given by κ/d.
Pr = ν/κ is the Prandtl number (ratio of viscous to thermal diffusivities) and ζ = η/κ

is the ratio of magnetic to thermal diffusivities. The more conventional magnetic Prandtl
number Pm can be obtained from Pm = Pr/ζ .

For this study, we consider so-called 2.5-dimensional flows so that the velocity field
contains all three components but each component depends only on the two spatial com-
ponents, y and z, i.e. u = (u(y, z), v(y, z),w(y, z)). It follows that θ and p are also only
functions of y and z and so all x-derivatives in equations (3)–(5) can be taken to be zero.
Themagnetic field, however, must depend on all three spatial coordinates in order to avoid
anti-dynamo theorems (Cowling 1933). By considering simplified hydrodynamic flows,
we are able to reach much higher Rm and probe dynamo action in a more astrophysically
relevant regime.

We assume the top and bottom boundaries to be: held at fixed temperature, imperme-
able, perfectly conducting and at fixed stress (so that the perturbations to the thermal wind
are stress free), that is

θ = ∂u
∂z

= ∂v

∂z
= w = ∂Bx

∂z
= ∂By

∂z
= Bz = 0 on z = 0, 1. (8)

Furthermore, we assume all quantities to be periodic in the y direction. Note, although the
basic state temperature (1) does not satisfy periodic boundaries in y, only the gradient of
the basic state temperature appears in the governing equations.

Our assumption that u depends only on y and z (and t) means that the induction
equation (7) is separable and solutions can be written as

B = B̂(y, z, t) exp(ikxx), (9)

where B̂ = (B̂x, B̂y, B̂z) is a complex amplitude and kx is the wavenumber in x. With this,
the systemof equations (3)–(7) becomes two-dimensional allowing largerRm to be reached
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with relative computational ease.We solve the governing equations using the open-source,
pseudospectral code Dedalus1 (Burns et al. 2016). A domain size of [Ly, Lz] = [10, 1] is
used throughout, with resolutions of up to 4096 × 512 modes (after dealiasing) utilised.
The large horizontal box size ensures a separation of scales between the smaller scale
turbulence and the box size.

2.1. Diagnostic quantities

To assess the hydrodynamic properties of the flows satisfying (3)–(5), we define the
following quantities. The relative helicity is given by

h(z) =
〈

〈u′·ω′〉y
〈u′2〉1/2y 〈ω′2〉1/2y

〉
t

, (10)

whereω′ = ∇ × u′ is the vorticity and 〈·〉y, 〈·〉t denote an average over y and t respectively.
u′ = u − 〈u〉y is the fluctuation of u about its mean state 〈u〉y. We use u′ in the calculation
of h because we are interested in the helicity of the turbulent eddies and not the large-
scale component of the flow. Since we assume the Boussinesq approximation, the system
possesses a symmetry about the midplane (z=0.5) and therefore an average of h over z
would lead to zero net helicity. So instead, we define H = 〈h(z)〉z− , where the average in z
is taken over the lower half plane only (z ≤ 0.5). For a statistically steady system, we would
expect this value to equal the average of h(z) taken over the upper half plane. We shall
return to the importance of helicity in the conclusions.

We consider two measures of the relative shear in the flow: first, we define

Su =
〈
KEutot
KEtot

〉
t
, (11)

where KEutot = 0.5〈(〈(u + U0)〉y)2〉z is the kinetic energy in the x component of the total
mean flow and KEtot = 0.5〈(u + U0)

2 + v2 + w2)〉yz is the total kinetic energy in the
fluctuations and the basic state velocity. Second, we define

S =
〈
KEutot + KEv

KEtot

〉
t
, (12)

where KEv = 0.5〈(〈v〉y)2〉z is the kinetic energy in the y component of the mean flow.
These quantities give a measure of the energy in the shear flow relative to the total kinetic
energy.

3. Hydrodynamic flows

Flows governed by equations (3)–(5) are determined by the dimensionless parameters
Pr,Ta,φ,Ra and Ty. In this paper, we will consider, for simplicity, only fluid with Pr=1. Ta
will also be fixed, at 5 × 106 (to see the effect of rotation rate on the flows, see e.g. Hathaway
et al. 1980; Currie 2014). We then vary the latitude, Rayleigh number and thermal wind

1 http://dedalus-project.org/
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Figure 1. Snapshots of utotal = U0 + u (first column), v (second column) andw (third column) for cases
withNcrit = 11.63, Ta = 5 × 106 and (a) Ty = 0,φ = π/2, (b) Ty = 0,φ = π/12, (c) Ty = −5,φ = π/2
and (d) Ty = −5,φ = π/12 (Colour online).

strength to achieve a variety of flows. The degree of supercriticality of the flows ismeasured
throughNcrit = Ra/Rac, where Rac is the value of Ra required for convection to onset in a
finite box of size [Ly, Lz] = [10, 1]. The effect of Ty on Rac is investigated in Currie (2014),
but in all cases considered here a larger |Ty| corresponds to a smaller Rac. The difference in
flowmorphology in four different regimes (at the pole, without andwith thermal wind, and
near the equator, without and with thermal wind (but all with Ncrit = 11.63 )) is shown by
the snapshots of the velocity field in each of these regimes (see figure 1). In (a), Ty = 0 and
the rotation is vertically aligned (i.e. φ = π/2), in (b) Ty = 0 but now the layer is close to
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Figure 2. Mean flow components 〈utotal〉y = 〈U0 + u〉y (left) and 〈v〉y (right) for the same cases as in
figure 2. The contours give the mean flow as a function of depth and time (bottom axes and colour bar)
and the thick solid line gives the time averaged mean (top axes) (Colour online).

the equator with φ = π/12 and so the convection rolls are tilted to align with the rotation
vector. A key difference between (a) and (b) can perhaps be attributed to the reduction in
rotational constraint that comes from decreasing φ since this decreases the magnitude of
the vertical component of rotation; the horizontal length scale of the solution is larger in
(b) and the flow velocities are higher. The addition of a strong thermal wind introduces a
strong shear in the layer, which is particularly evident in the zonal (x-component) velocity
of cases (c) and (d). The vertical alignment of the shear appears to depend on φ.

The corresponding mean (y-averaged) flows are shown in figure 2. The contour plots
give themean flows as a function of z and timewhile the overlying black line gives the time-
averaged values of the mean flow. Clearly in case (a), whilst there is a non-zero mean flow
at each instance in time, on averaging over a long enough period to achieve steady statis-
tics, the mean flows are very small (this is to be expected as there is no preferred direction
in the horizontal plane). In (b), the tilting of the rotation now breaks this symmetry and
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Figure 3. Top row: Measures of the relative shear Su (red, dashed) and S (black, solid) as defined by (11)
and (12) respectively.Middle row: Relative helicity,H, as defined in Section 2.1 and bottom row: rmsmea-
sure of the velocity perturbations, urms. Different marker types indicate different parameter regimes. In
the first column |Ty| is varied for fixed φ and Ncrit; squares represent φ = π/12,Ncrit = 11.63, circles
represent φ = π/12,Ncrit = 100 and crosses represent φ = π/4,Ncrit = 11.63. In the second column,
φ is changed for fixed Ty and Ncrit. Note, on the x-axis we plot π/2 − φ so that moving along the x-
axis corresponds to tilting the rotation vector further from the vertical (decreasing latitude, φ); squares
represent Ty = 0,Ncrit = 11.63, circles represent Ty = −5,Ncrit = 11.63 and crosses represent Ty =
−5,Ncrit = 100. In the third column,Ncrit is changedwhilst keeping Ty andφ constant; squares represent
Ty = −200,φ = π/12, circles represent Ty = −5,φ = π/12 and crosses represent Ty = −5,φ = π/4
(Colour online).

this leads to systematic mean flows (such flows have been seen in many cases, e.g. Hath-
away and Somerville 1983; Brummell et al. 1998; Julien and Knobloch 1998; Currie and
Tobias 2016). The addition of a basic state thermal wind leads to a significant increase in
the strength of the mean flows, this is most obvious in the zonal direction as, by definition,
the mean flow in this direction contains the basic state flow, but from (c) and (d) right-
hand panels, it is also clear that the addition of a thermal wind leads to strong mean flow
in the y direction also.

As was discussed in Section 1, shear and helicity are expected to play an important role
in magnetic field generation through dynamo action, we therefore consider the size of the
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relative shear and helicity for different types of flow (some examples of which were sam-
pled in figures 1 and 2). The relative shear, S (defined in (12)) is shown in figure 3(a–c);
Su (defined in (11)) is also shown but the trends are found to be very similar and so we
restrict ourselves to describing the behaviour of S in the text. From (b) we see that, although
S increases at lower latitudes (note, the latitude decreases with increasing x-axis) it is rel-
atively small when Ty = 0 – taking values of less than approximately 16%. Introducing a
thermal wind can increase S significantly, particularly at lower latitudes (though the exact
behaviour depends crucially on the other system parameters, e.g. Ra). Once a moderate
thermal wind is present, increasing Ty further only acts to increase S slightly; in (a), S
increases with |Ty| until approximately Ty = −1 where S then remains roughly constant as
Ty is decreased further from−1 to−5. Furthermore, (c) shows that even with Ty = −200,
S does not change much from the value at Ty = −5 (all other parameters being equal). We
note that Ty = −200 is an extremely large horizontal temperature gradient, it is unphysi-
cally 200 times that of the vertical temperature gradient imposed to drive convection; we
include it here merely for demonstrative purposes. Figure 3(b) shows that tilting the rota-
tion further from the vertical can lead to a non-monotonic behaviour when a thermal wind
is present; as the rotation vector is tilted from the vertical, S decreases before increasing at
low latitudes (the case when Ty = 0 is less clear). In both thermal wind cases considered
in (b) (crosses and circles) S is largest near the equator. Figure 3(c) highlights that as Ncrit
is increased, S increases; this is because both the mean flow driven by the turbulence and
the basic state thermal wind are stronger.

Figure 3(d–f) depicts how the relative helicity H (defined in Section 2.1) changes as
a function of Ty,φ and Ncrit. Clearly the behaviour is complex and depends strongly on
which area of parameter space one is examining. However, in all cases considered here,
H never appears to exceed 0.3 (recall this a half-box average and that the net helicity is
close to zero). In (d), similar to the behaviour of S, H does not change much with Ty for
Ty < −1 (all other parameters fixed). For Ty = 0 and Ncrit = 11.63 (see (e), squares) H
decreases as the tilt angle increases; this is likely to be because of the reduction in rotational
constraint, allowing for larger velocities (see figure 3h).WhenTy �= 0, the situation ismore
complicated and depends on Ncrit. For example, when Ncrit = 11.63 (circles), H increases
asφ decreases but forNcrit = 100 (crosses),H is notmonotonic and remains approximately
constant. In both cases, the behaviour of H is well correlated with the root-mean-square
perturbation velocity, urms: an increase in H coincides with a decrease in urms and vice
versa. Figure 3(f) highlights that H can both increase and decrease with Ncrit depending
on the value of φ, but for Ty �= 0, the value of H is largely independent of Ty itself. The
corresponding values of urms are given in figure 3(g–i). In (g) and (h), Ncrit is constant for
each set of parameters, however, the value of urms changes with φ and whether a thermal
wind is present or not.

We finish describing this figure by commenting on the distinctive behaviour of the case
when φ = π/6,Ty = 0 andNcrit = 11.63 ; in this case, urms appears to be significantly out-
of-trend when comparing with the same Ty,Ncrit but varying φ (see figure 3h, squares).
To understand this further, we examine the spatial form of the velocity and temperature
perturbations in this case (see figure 4). Whilst the temperature perturbation θ is very
similar in all three cases shown, u shows significant differences in its spatial structure. As
φ is decreased from φ = π/4 to φ = π/6, the length scale of u increases significantly and
u itself is less turbulent for φ = π/6 than for φ = π/4. We suggest that this is a trait of
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Figure 4. Snapshots of (a) utotal = U0 + u and (b) θ for Ty = 0 and Ncrit = 11.63 for cases with φ =
π/4,φ = π/6 and φ = π/12 from left to right respectively (Colour online).

these parameters that allows a more laminar solution to be dominant at φ = π/4, with
this particular solution having a higher urms, as shown in figure 3(h). Decreasing φ further
to φ = π/12 leads to a more turbulent solution again (although not as turbulent as when
φ = π/4) and this coincides with φ = π/12 having an urms that is less than that when
φ = π/6 but bigger than that when φ = π/4.

The variety of flows studied here have different heat transport properties, a more
detailed description of the heat transport across the layer can be found in Appendix.

4. Kinematic dynamo action

4.1. Growth rate

The turbulent flows that we examined in Section 3 are expected to be very good dynamos
even at high Rm as they are very time dependent and chaotic (Vishik 1989; Klapper and
Young 1995; Childress and Gilbert 1995). As discussed in Section 3, they also have self-
consistently generated shear flows, which may play an important role in modifying the
dynamo properties. In this section, we examine the properties of magnetic field, such as
spatial dependence and growth rate, that is generated via kinematic dynamo action. As
described in Section 2, the induction equation is solved with the horizontal wavenumber
kx as a parameter and, because of the linearity of the induction equation, themagnetic field
will either grow exponentially (if it is a dynamo) or it will decay exponentially (on average).
In any case, a well-defined average growth rate can be determined by calculating a line of
best fit for the exponentially growing magnetic energy in the time-series. Each kx will have
an associated growth rate and we are interested in which mode gives the maximal growth
rate (see, for example Roberts 1972; Galloway and Proctor 1992). Figure 5(a) shows the
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Figure 5. (a) Growth rate against kx for Rm ∼ 4300 (triangles), Rm ∼ 8700 (circles), Rm ∼ 17000
(squares), Rm ∼ 35, 000 (crosses) Rm ∼ 44, 000 (dots) and Rm ∼ 66, 000 (diamonds), for cases with
φ = π/12, Ty = −5 and Ncrit = 19.53. Negative growth rates are plotted with a zero growth rate. (b)
Maximum growth rate (crosses) and corresponding kx (circles) against Rm for the same φ, Ty and Ncrit as
in (a). The growth rates have been scaled to be in units of the turnover time of the flow.

growth rate as a function of kx for six different values of ζ (and therefore Rm, since here
Rm = urms/ζ ). Each curve has a well-defined preferred kx and for high kx the growth rate
becomes negative. In figure 5(b), we plot the maximum growth rate and corresponding
kx as a function of Rm. The fact that the growth rate continues to increase with Rm indi-
cates we are not in an asymptotic regime where the dynamo reaches an asymptotic O(1)
growth rate (as measured in units of the turnover time of the flow) as Rm → ∞ (Chil-
dress and Gilbert 1995); hence it is not possible to say whether the dynamos here are fast.
A quick dynamo reaches its asymptotic growth rate close to Rmc where Rmc is the critical
Rm (Tobias and Cattaneo 2008). That is, it approaches asymptoticity for χ = Rm/Rmc not
too large (maybe O(10)) (Tobias and Cattaneo 2015). In figure 5(b), the largest Rm have
χ ∼ 30 and as discussed above we are not in the asymptotic regime, therefore the dynamos
in this case appear not to be quick either.

We note that as we decrease ζ to increase Rm (holding the flow fixed) we are increasing
the magnetic Prandtl number Pm. All of these dynamos are in the Pm>1 regime with
some of these having Pm � 1 (in figure 6, Pm ranges from 2 to 30). It is well known that
for such dynamos the dissipative cut-off for the magnetic field lies to the right of that for
the velocity in k-space (as demonstrated by the spectra in figure 6). Here we can see the
dissipative cut-off moving progressively to the right as Pm is increased. We note here that
in many convectively driven dynamos (for example, the dynamos of planetary and stellar
interiors) the correct parameter regime has Pm � 1, with the dissipative cut-off for the
magnetic field to the left of that for the velocity. This regime is hard to access numerically
(Schekochihin et al. 2007) for dynamo action, though magnetoconvection calculations in
this parameter regime may prove of interest.

To determine how the growth rate of the dynamo is affected by the shear in the flows, we
consider how themaximum growth rate changes with S (defined in (12)) – see figure 7. For
this case, Ta = 5 × 106,φ = π/4,Ty = −5 and S is changed by varyingNcrit between 11.6
and 64.6 (the hydrodynamic properties of these flows were considered in figure 3c, f and i).
From figure 3(i), we see that urms remains roughly constant and so for fixed ζ = 1/16
(as is the case in figure 7) Rm is also roughly constant. However, Rmc may change as the
Ncrit is varied. Clearly, the maximum growth rate increases with S, this is the expected
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Figure 6. Spectrum of the magnetic energy (blue) for three different Pm (equivalently Rm). The kinetic
energy spectrum is the same in all three cases and is given by the red line. All spectra have been
normalised to be 1 at their maximum value (Colour online).
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Figure 7. Maximum growth rate (crosses) and corresponding kx (circles) as a function of the relative
shear, S, for Ty = −5 and φ = π/4. S is increased by increasing Ncrit between 11.6 and 64.6 – see
figure 3(c). In all cases, ζ = 1/16.

behaviour at low Rm where shear is thought to aid small-scale dynamo action (Yousef et
al. 2008); it is also another indicator that we are not in the asymptotic regime where it is
expected the shear would decrease the growth rate of the small-scale dynamo (Tobias and
Cattaneo 2013). The wavenumbers corresponding to themaximum growth rates are small-
est for the largest shears which agree with the idea that strong shear will wipe out high k
(small-scale modes). However, as noted previously, since here the shear is self-consistently
generated by the flow, to obtain different values of S the flow has to vary and in general Rmc
will vary too.

4.2. Magnetic field

Illustrative examples of the formof themagnetic field are given in figure 8 for caseswith and
without thermal winds. For φ = π/12,Ty = −5,Ncrit = 19.53, kx = 10 andRm ∼ 35, 000
(i.e. a strong thermal wind), figure 8(b) shows the spatial form of the magnetic field com-
ponents at x=0. Clearly the field is not uniformly amplified and the regions of strongest
field occur, as expected, in regions where the shear is strongest (for reference the snapshots
of the flow field for this case are similar to those shown in figure 1d). For comparison,
in figure 8(a), we show the spatial form of the magnetic field components for a case with
φ = π/2,Ty = 0,Ncrit = 11.63, kx = 5 and Rm ∼ 39, 000 and so there is no thermal wind



GEOPHYSICAL & ASTROPHYSICAL FLUID DYNAMICS 13

Figure 8. The three magnetic field components for (a) φ = π/2, Ty = 0,Ncrit = 11.63, kx = 5 and
Rm ∼ 39, 000 and (b)φ = π/12, Ty = −5,Ncrit = 19.53, kx = 10 and Rm ∼ 35, 000. The field has been
normalised for each component by its maximum value so that it lies between plus and minus one.

Figure 9. Mean components of the magnetic field at x= 0 plotted against time and z for the same
parameters as used in figure 8. The exponential growth of the field has been removed at each time.
The time has also been rescaled to be measured in units of the turnover time.

or tilted rotation (and hence no systematic shear). Here the field small-scale across the layer
with no preferred locations for dynamo action.

However, it is of interest to examine the role of the shear in modifying the kinematic
large-scale properties of the field. To this end, we consider the mean (y-averaged) fields as
a function of the layer depth and time; recall the field varies sinusoidally in x. The plots
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corresponding to the same parameters as in figure 8 are given in figure 9. There is little
evidence of systematic large-scale behaviour, though at any given time the 〈Bz〉 does appear
to have a large-scale component. Hence the dynamo appears to be dominated by small
scales as seen in some other high Rm studies.

The plots we include here are representative of the form of the field found for almost all
parameter values. Small-scale magnetic fields appear to dominate over the systematic large
scales despite the presence of rotation and systematic shear. We shall return to this point
in the discussion.

5. Discussion and conclusion

In this paper, we have examined the kinematic dynamo properties of a 2.5-dimensional
Boussinesq convective flow in a rotating Cartesian domain. For these flows, a system-
atic shear is driven naturally either via the interaction of convection with rotation that
is not aligned with gravity (as measured by a tilt angle φ) or via the interaction of a lat-
itudinal temperature gradient with rotation (a so-called thermal wind) (Hathaway and
Somerville 1983; Currie 2014). We have calculated the hydrodynamic properties – includ-
ing the relative helicity (averaged over half the domain), relative shear and heat transport –
of such flows as a function of tilt angle and Rayleigh number Ra. Because of the Boussi-
nesq symmetry, the helicity is an antisymmetric function of height (on average) so the net
helicity is zero when averaged over the flow as a whole.

We found that these flows were excellent dynamos (even at high Rm), however, even
at Rm ∼ 30Rmc, the growth rate had not reached the asymptotic regime – this has conse-
quences for our interpretation of dynamo results from three-dimensional simulations that
purport to explore the high Rm regime. Furthermore, it appears as though these flows act
as small-scale dynamos, with very little systematic behaviour being apparent at high Rm.

We conclude by speculating on the reasons for the absence of large-scale dynamo action
in our convection system. Pongkitiwanichakul et al. (2016) demonstrated that in order for
large-scale dynamo waves to be observed at high Rm the underlying flow required to have
suitably large (net) relative helicity and shear. Indeed in that paper it was speculated that the
presence of large-scale dynamowaves was predicated on the product of the shear and helic-
ity being larger than a critical threshold. In our system, although the shear is strong, the net
helicity is small owing to the Boussinesq symmetry (although the helicity is not insignif-
icant when measured over half the domain – see figure 10). It may be that this hinders
large-scale dynamo action; indeed in the study of Cattaneo andHughes (2006) the convec-
tion had no large-scale shear and no net helicity and only small-scale dynamo action was
found. It is therefore of interest to examine the dynamo properties of convective systems
that allownet helicity to be generated, i.e. thosewith stratification (Currie andTobias 2016).
We propose to extend our investigation to this stratified case in the near future.

We do not believe that breaking the Boussinesq symmetry perturbatively will automat-
ically lead to the detection of a large-scale mode for the magnetic field. Rather it seems
from previous results (Pongkitiwanichakul et al. 2016; Nigro et al. 2017) that only a flow
with a sufficiently large product of shear and net helicity (sometimes characterised by a
dynamo number) can yield a large-scale signal that is strong enough to be detected over
the small-scale fluctuations. For small helicity and shear, there will be a large-scale mode,
which is detectable by filtering (Nigro et al. 2017) but this is swamped by the fluctuations.
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Figure 10. Regime diagram showing the position of all simulations in Relative shear–Relative helicity
(averaged over half the depth) space.

Indeed even for a Boussinesq systemwith no shear a suitably defined large-scale field can be
detected, but this is completely overwhelmed by the fluctuations in the kinematic regime.
The presence of shear in combination with a net helicity leads to the formation of propa-
gating waves with a well-defined period – a signal that is more easily detected among the
sea of fluctuations.

We also note that it has been found that the precise nature of the magnetic boundary
conditions can make a large difference for the generation of magnetic fields (Bushby et
al. 2018), potentially because of the fluxes of helicity that are allowed from the domain
(Blackman and Field 2000; Bodo et al. 2017). Moreover, the problem we have considered
here is kinematic, in reality the Lorentz force acts back on the convective flow and the
dynamo properties of the saturated state should be different, potentially saturating the
small-scale dynamo and allowing the large-scale dynamo to take over. This can only be
examined in a fully three-dimensional simulation and work has already started on such
a model.
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Appendix: Heat transport

The heat flux across the layer can be determined by considering the full (non-dimensionalised) heat
equation, which can be written as

∂T
∂t

+ (u·∇)T = ∇2T. (A1)

Then ifwe assume a statistically steady state and integrate over the area given by 0 ≤ y ≤ Ly,≤ z ≤ z′
where 0 ≤ z′ ≤ 1 is some depth in the layer we find

∫ z′

0

∫ Ly

0
∇·(∇T)dydz −

∫ z′

0

∫ Ly

0
∇·(uT)dydz = 0, (A2)
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Figure A1. Components of the heat flux Fcond (red, dashed), Fconv (purple, dot-dashed), FTW (blue, dot-
ted) and their sum, F, (black, solid) for two different cases. Both cases have Ta = 5 × 106,φ = π/12 and
Ncrit = 11.63 but in (a) Ty = 0 and in (b) Ty = −1 (Colour online).

where we have made use of the incompressibility condition (3). Applying the divergence theorem to
equation (A2) and dividing by Ly to form an equation for the heat flux leads to

1
Ly

∫ Ly

0
−∂T

∂z

∣∣∣∣
z=0

dy = 1
Ly

∫ Ly

0
−∂T

∂z

∣∣∣∣
z=z′

dy + 1
Ly

∫ Ly

0
wT

∣∣
z=z′dy

+ 1
Ly

∫ z′

0
TyLyv

∣∣
y=Ly

dz, (A3)

which can be written as
1
Ly

∫ Ly

0
−∂T

∂z

∣∣∣∣
z=0

dy︸ ︷︷ ︸
Fcond(z=0)

= 1
Ly

∫ Ly

0
−∂T

∂z

∣∣∣∣
z=z′

dy︸ ︷︷ ︸
Fcond(z=z′)

+ 1
Ly

∫ Ly

0
wθ

∣∣∣∣
z=z′

dy︸ ︷︷ ︸
Fconv(z=z′)

+ 1
Ly

∫ z′

0

∫ Ly

0
vTydy dz︸ ︷︷ ︸

FTW(z=z′)

. (A4)

Here Fcond defines the heat flux carried by conduction, Fconv defines a convective flux and FTW is an
additional flux carried by the basic state thermal wind shear; this term is zero when Ty = 0. There
is no internal heat generation in this model and so the flux at the bottom boundary should equal
the flux emerging at the top (this is a good diagnostic to check the convergence our simulations). To
illustrate how the different components of heat transport vary as a function of depth we have plotted
each of these terms for a case with Ty = 0 (see figure A1a) and a case with similar parameters but
Ty = −1 (see figure A1b). In (a), we see that (as expected) FTW = 0, the conductive flux is carrying
all the flux near the boundaries but is small in the bulk and Fconv is the dominant flux in the interior.
The sum of these fluxes is shown by the solid black line, and in a perfectly steady state would be
constant across the layer. In (b), FTW now plays a significant role in the heat transport; it carries
most of the flux in themid layers but decreases towards the boundaries. There are small layers where
Fconv is significant but Fcond is only large very close to the boundaries. Unlike in the Ty = 0 case,
Fcond actually becomes inward (representing downward transport of heat) at mid depths, that is, the
thermal wind has reversed the sign of the temperature gradient in these regions. The magnitude of
the convective flux in the mid region is similar in the two cases shown, however, the total flux F is
much larger in the case with a non-zero thermal wind.
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