2,869 research outputs found
Dogmatism manifests in lowered information search under uncertainty
When knowledge is scarce, it is adaptive to seek further information to resolve uncertainty and obtain a more accurate worldview. Biases in such information-seeking behavior can contribute to the maintenance of inaccurate views. Here, we investigate whether predispositions for uncertainty-guided information seeking relate to individual differences in dogmatism, a phenomenon linked to entrenched beliefs in political, scientific, and religious discourse. We addressed this question in a perceptual decision-making task, allowing us to rule out motivational factors and isolate the role of uncertainty. In two independent general population samples (n = 370 and n = 364), we show that more dogmatic participants are less likely to seek out new information to refine an initial perceptual decision, leading to a reduction in overall belief accuracy despite similar initial decision performance. Trial-by-trial modeling revealed that dogmatic participants placed less reliance on internal signals of uncertainty (confidence) to guide information search, rendering them less likely to seek additional information to update beliefs derived from weak or uncertain initial evidence. Together, our results highlight a cognitive mechanism that may contribute to the formation of dogmatic worldviews
Methodological bias in cluster randomised trials
Background: Cluster randomised trials can be susceptible to a range of methodological problems. These problems are not commonly recognised by many researchers. In this paper we discuss the issues that can lead to bias in cluster trials. Methods: We used a sample of cluster randomised trials from a recent review and from a systematic review of hip protectors. We compared the mean age of participants between intervention groups in a sample of 'good' cluster trials with a sample of potentially biased trials. We also compared the effect sizes, in a funnel plot, between hip protector trials that used individual randomisation compared with those that used cluster randomisation. Results: There is a tendency for cluster trials, with evidence methodological biases, to also show an age imbalance between treatment groups. In a funnel plot we show that all cluster trials show a large positive effect of hip protectors whilst individually randomised trials show a range of positive and negative effects, suggesting that cluster trials may be producing a biased estimate of effect. Conclusion: Methodological biases in the design and execution of cluster randomised trials is frequent. Some of these biases associated with the use of cluster designs can be avoided through careful attention to the design of cluster trials. Firstly, if possible, individual allocation should be used. Secondly, if cluster allocation is required, then ideally participants should be identified before random allocation of the clusters. Third, if prior identification is not possible, then an independent recruiter should be used to recruit participants
Wear resistant solid lubricating coatings via compression molding and thermal spraying technologies
This work combines two industrially friendly processing methods in order to create wear resistant and solid-lubricating composite coatings potentially suitable for high load applications. Layered composite coatings were fabricated over wrought stainless steel 444 (SS444) by compression molding a mixture of solid lubricant polymer, polytetrafluoroethylene (PTFE, 80 wt%), and wear resistant polymer, polyimide (PI, 20 wt%), onto iron aluminide (Fe3Al) thermal spray coatings without the need of either primers or adhesives. The fabrication process consisted of three main steps: deposition of the Fe3Al thermal spray coating onto a SS444 substrate and transfer into a metal mold; transfer, compress, and sinter mixed polymeric powder onto the thermal spray coating; and finally, sample cooling to room temperature. This method takes advantage of the high surface roughness of thermal spray coatings, which increases mechanical adhesion of slippery PTFE to the underlying metallic material. Coatings were produced with and without a small amount of graphite (5 wt%) to analyze its impact on sliding and wear properties. Unlike current coating technologies, the thickness of the coatings presented herein can be easily and quickly tailored by varying the amount of polymer powder added to the mold prior to compression or by grinding after fabrication. We produced and analyzed coatings ~1.3 mm in total thickness that portray coefficient of frictions ~0.1, similar to pure PTFE. The calculated wear rates for both coatings with and without graphite are an order of magnitude lower than what has been previously reported for coatings of similar composition. The influence of graphite on wear properties was found to be minimal due to the high content of self-lubricating PTFE yet can act as a way to lower material costs and increase the coatings load capacity
Corrosion of One-Step Superhydrophobic Stainless-Steel Thermal Spray Coatings
As most superhydrophobic coatings are made of soft materials, the need for harder, more robust films is evident in applications where erosional degradation is of concern. The work herein describes a methodology to produce superhydrophobic stainless-steel thermal spray coatings using the high-velocity oxygen fuel technique. Due to the use of a kerosene fuel source, a carbon-rich film is formed on the surface of the thermal spray coatings, lowering the surface energy of the high-energy metallic substrates. The thermal spray process generates a hierarchical micro-/sub-micro-structure that is needed to sustain superhydrophobicity. The effect of spray parameters such as particle velocity and temperature on the coating’s hydrophobicity state was explored, and a high particle velocity was shown to cause superhydrophobic characteristics. The coatings were characterized using scanning electron microscopy, profilometry, X-ray photoelectron spectroscopy, static water contact angle measurements, water droplet roll-off measurements, and water droplet bouncing tests. The corrosion behavior of the coatings was studied using potentiodynamic polarization measurements in order to correlate water repellency with corrosion resistance; however, all coatings demonstrated active corrosion without passivation. This study describes an interesting phenomenon where superhydrophobicity does not guarantee corrosion resistance and discusses alternative applications for such materials
A survey of location inference techniques on Twitter
The increasing popularity of the social networking service, Twitter, has made it more involved in day-to-day communications, strengthening social relationships and information dissemination. Conversations on Twitter are now being explored as indicators within early warning systems to alert of imminent natural disasters such as earthquakes and aid prompt emergency responses to crime. Producers are privileged to have limitless access to market perception from consumer comments on social media and microblogs. Targeted advertising can be made more effective based on user profile information such as demography, interests and location. While these applications have proven beneficial, the ability to effectively infer the location of Twitter users has even more immense value. However, accurately identifying where a message originated from or an author’s location remains a challenge, thus essentially driving research in that regard. In this paper, we survey a range of techniques applied to infer the location of Twitter users from inception to state of the art. We find significant improvements over time in the granularity levels and better accuracy with results driven by refinements to algorithms and inclusion of more spatial features
Similar neural pathways link psychological stress and brain-age in health and multiple sclerosis
Clinical and neuroscientific studies suggest a link between psychological stress and reduced brain health in health and neurological disease but it is unclear whether mediating pathways are similar. Consequently, we applied an arterial-spin-labeling MRI stress task in 42 healthy persons and 56 with multiple sclerosis, and investigated regional neural stress responses, associations between functional connectivity of stress-responsive regions and the brain-age prediction error, a highly sensitive machine learning brain health biomarker, and regional brain-age constituents in both groups. Stress responsivity did not differ between groups. Although elevated brain-age prediction errors indicated worse brain health in patients, anterior insula–occipital cortex (healthy persons: occipital pole; patients: fusiform gyrus) functional connectivity correlated with brain-age prediction errors in both groups. Finally, also gray matter contributed similarly to regional brain-age across groups. These findings might suggest a common stress–brain health pathway whose impact is amplified in multiple sclerosis by disease-specific vulnerability factors
The connection between superconducting phase correlations and spin excitations in YBaCuO: A magnetic field study
One of the most striking universal properties of the
high-transition-temperature (high-) superconductors is that they are all
derived from the hole-doping of their insulating antiferromagnetic (AF) parent
compounds. From the outset, the intimate relationship between magnetism and
superconductivity in these copper-oxides has intrigued researchers. Evidence
for this link comes from neutron scattering experiments that show the
unambiguous presence of short-range AF correlations (excitations) in cuprate
superconductors. Even so, the role of such excitations in the pairing mechanism
and superconductivity is still a subject of controversy. For
YBaCuO, where controls the hole-doping level, the most
prominent feature in the magnetic excitations spectra is the ``resonance''.
Here we show that for underdoped YBaCuO, where and
are below the optimal values, modest magnetic fields suppress the resonance
significantly, much more so for fields approximately perpendicular rather than
parallel to the CuO planes. Our results indicate that the resonance
measures pairing and phase coherence, suggesting that magnetism plays an
important role in the superconductivity of cuprates. The persistence of a field
effect above favors mechanisms with preformed pairs in the normal state
of underdoped cuprates.Comment: 12 pages, 4 figures, Nature (in press
Smeared versus localised sources in flux compactifications
We investigate whether vacuum solutions in flux compactifications that are
obtained with smeared sources (orientifolds or D-branes) still survive when the
sources are localised. This seems to rely on whether the solutions are BPS or
not. First we consider two sets of BPS solutions that both relate to the GKP
solution through T-dualities: (p+1)-dimensional solutions from
spacetime-filling Op-planes with a conformally Ricci-flat internal space, and
p-dimensional solutions with Op-planes that wrap a 1-cycle inside an everywhere
negatively curved twisted torus. The relation between the solution with smeared
orientifolds and the localised version is worked out in detail. We then
demonstrate that a class of non-BPS AdS_4 solutions that exist for IASD fluxes
and with smeared D3-branes (or analogously for ISD fluxes with anti-D3-branes)
does not survive the localisation of the (anti) D3-branes. This casts doubts on
the stringy consistency of non-BPS solutions that are obtained in the limit of
smeared sources.Comment: 23 pages; v2: minor corrections, added references, version published
in JHE
Non-thermal emission processes in massive binaries
In this paper, I present a general discussion of several astrophysical
processes likely to play a role in the production of non-thermal emission in
massive stars, with emphasis on massive binaries. Even though the discussion
will start in the radio domain where the non-thermal emission was first
detected, the census of physical processes involved in the non-thermal emission
from massive stars shows that many spectral domains are concerned, from the
radio to the very high energies.
First, the theoretical aspects of the non-thermal emission from early-type
stars will be addressed. The main topics that will be discussed are
respectively the physics of individual stellar winds and their interaction in
binary systems, the acceleration of relativistic electrons, the magnetic field
of massive stars, and finally the non-thermal emission processes relevant to
the case of massive stars. Second, this general qualitative discussion will be
followed by a more quantitative one, devoted to the most probable scenario
where non-thermal radio emitters are massive binaries. I will show how several
stellar, wind and orbital parameters can be combined in order to make some
semi-quantitative predictions on the high-energy counterpart to the non-thermal
emission detected in the radio domain.
These theoretical considerations will be followed by a census of results
obtained so far, and related to this topic... (see paper for full abstract)Comment: 47 pages, 5 postscript figures, accepted for publication in Astronomy
and Astrophysics Review. Astronomy and Astrophysics Review, in pres
- …