324 research outputs found

    Systematic review and meta-analysis of the diagnostic accuracy of ultrasonography for deep vein thrombosis

    Get PDF
    Background Ultrasound (US) has largely replaced contrast venography as the definitive diagnostic test for deep vein thrombosis (DVT). We aimed to derive a definitive estimate of the diagnostic accuracy of US for clinically suspected DVT and identify study-level factors that might predict accuracy. Methods We undertook a systematic review, meta-analysis and meta-regression of diagnostic cohort studies that compared US to contrast venography in patients with suspected DVT. We searched Medline, EMBASE, CINAHL, Web of Science, Cochrane Database of Systematic Reviews, Cochrane Controlled Trials Register, Database of Reviews of Effectiveness, the ACP Journal Club, and citation lists (1966 to April 2004). Random effects meta-analysis was used to derive pooled estimates of sensitivity and specificity. Random effects meta-regression was used to identify study-level covariates that predicted diagnostic performance. Results We identified 100 cohorts comparing US to venography in patients with suspected DVT. Overall sensitivity for proximal DVT (95% confidence interval) was 94.2% (93.2 to 95.0), for distal DVT was 63.5% (59.8 to 67.0), and specificity was 93.8% (93.1 to 94.4). Duplex US had pooled sensitivity of 96.5% (95.1 to 97.6) for proximal DVT, 71.2% (64.6 to 77.2) for distal DVT and specificity of 94.0% (92.8 to 95.1). Triplex US had pooled sensitivity of 96.4% (94.4 to 97.1%) for proximal DVT, 75.2% (67.7 to 81.6) for distal DVT and specificity of 94.3% (92.5 to 95.8). Compression US alone had pooled sensitivity of 93.8 % (92.0 to 95.3%) for proximal DVT, 56.8% (49.0 to 66.4) for distal DVT and specificity of 97.8% (97.0 to 98.4). Sensitivity was higher in more recently published studies and in cohorts with higher prevalence of DVT and more proximal DVT, and was lower in cohorts that reported interpretation by a radiologist. Specificity was higher in cohorts that excluded patients with previous DVT. No studies were identified that compared repeat US to venography in all patients. Repeat US appears to have a positive yield of 1.3%, with 89% of these being confirmed by venography. Conclusion Combined colour-doppler US techniques have optimal sensitivity, while compression US has optimal specificity for DVT. However, all estimates are subject to substantial unexplained heterogeneity. The role of repeat scanning is very uncertain and based upon limited data

    Soluble CD59 Expressed from an Adenovirus In Vivo Is a Potent Inhibitor of Complement Deposition on Murine Liver Vascular Endothelium

    Get PDF
    Inappropriate activation of complement on the vascular endothelium of specific organs, or systemically, underlies the etiology of a number of diseases. These disorders include atypical hemolytic uremic syndrome, membranoproliferative glomerulonephritis, atherosclerosis, age-related macular degeneration, diabetic retinopathy, and transplant rejection. Inhibition of the terminal step of complement activation, i.e. formation of the membrane attack complex, using CD59 has the advantage of retaining the upstream processes of the complement cascade necessary for fighting pathogens and retaining complement's crucial role in tissue homeostasis. Previous studies have shown the necessity of membrane targeting of soluble CD59 in order for it to prove an effective inhibitor of complement deposition both in vitro and in vivo. In this study we have generated an in vivo model of human complement activation on murine liver vascular endothelium. This model should prove useful for the development of anti-complement therapies for complement-induced pathologies of vascular endothelium. Using this model, we have demonstrated the viability of a non membrane-targeted soluble CD59 to significantly inhibit complement deposition on the endothelium of murine liver vasculature when expressed in vivo from an adenovirus. This result, unanticipated based on prior studies, suggests that the use of non membrane-targeted sCD59 as an anti-complement therapy be re-visited

    A Non Membrane-Targeted Human Soluble CD59 Attenuates Choroidal Neovascularization in a Model of Age Related Macular Degeneration

    Get PDF
    Age related macular degeneration (AMD) is the most common cause of blindness amongst the elderly. Approximately 10% of AMD patients suffer from an advanced form of AMD characterized by choroidal neovascularization (CNV). Recent evidence implicates a significant role for complement in the pathogenesis of AMD. Activation of complement terminates in the incorporation of the membrane attack complex (MAC) in biological membranes and subsequent cell lysis. Elevated levels of MAC have been documented on choroidal blood vessels and retinal pigment epithelium (RPE) of AMD patients. CD59 is a naturally occurring membrane bound inhibitor of MAC formation. Previously we have shown that membrane bound human CD59 delivered to the RPE cells of mice via an adenovirus vector can protect those cells from human complement mediated lysis ex vivo. However, application of those observations to choroidal blood vessels are limited because protection from MAC- mediated lysis was restricted only to the cells originally transduced by the vector. Here we demonstrate that subretinal delivery of an adenovirus vector expressing a transgene for a soluble non-membrane binding form of human CD59 can attenuate the formation of laser-induced choroidal neovascularization and murine MAC formation in mice even when the region of vector delivery is distal to the site of laser induced CNV. Furthermore, this same recombinant transgene delivered to the intravitreal space of mice by an adeno-associated virus vector (AAV) can also attenuate laser-induced CNV. To our knowledge, this is the first demonstration of a non-membrane targeting CD59 having biological potency in any animal model of disease in vivo. We propose that the above approaches warrant further exploration as potential approaches for alleviating complement mediated damage to ocular tissues in AMD

    Dissecting the Autocrine and Paracrine Roles of the CCR2-CCL2 Axis in Tumor Survival and Angiogenesis

    Get PDF
    The CCL2 CCR2 axis is likely to contributes to the development and progression of cancer diseases by two major mechanisms; autocrine effect of CCL2 as a survival/growth factor for CCR2+ cancer cells and, the attraction of CCR2+ CX3CR1+tumor associated macrophages that in the absence of CCR2 hardly migrate. Thus far no in vivo system has been set up to differentiate the selective contribution of each of these features to cancer development. Here we employed a chimera animal model in which all non-malignant cells are CCR2−/−, but all cancer cells are CCR2+, combined with an adoptive transfer system of bone marrow (BM) CX3CR1+ cells from CCR2+ mice harboring a targeted replacement of the CX3CR1gene by an enhanced green fluorescent protein (EGFP) reporter gene (cx3cr1gfp), together with the CD45.1 congene. Using this system we dissected the selective contribution of CX3CR1+CCR2+ cells, which comprise only about 7% of CD11b+ BM cells, to tumor development and angiogenesis. Showing that aside for their direct pro-angiogenic effect they are essential for the recruitment of other CD11b+ cells to the tumor site. We further show that the administration of CCR2-Ig, that selectively and specifically neutralize CCL2, to mice in which CCR2 is expressed only on tumor cells, further suppressed tumor development, implicating for the key role of this chemokine supporting tumor survival in an autocrine manner. This further emphasizes the important role of CCL2 as a target for therapy of cancer diseases

    Cervical, Anal and Oral HPV in an Adolescent Inner-City Health Clinic Providing Free Vaccinations

    Get PDF
    Published human papillomavirus (HPV) vaccine trials indicate efficacy is strongest for those naive to the vaccine-types. However, few high-risk young women have been followed and cervical HPV has been the predominant outcome measure.We collected cervical and anal swabs, as well as oral rinse specimens from 645 sexually active inner-city young females attending a large adolescent health-clinic in New York City that offers free care and HPV vaccination. Specimens were tested for HPV-DNA using a MY09/MY11-PCR system. Type-specific prevalence of HPV at each anatomic site was compared for individuals by vaccination dose using generalized estimating equation logistic regression models.The majority of subjects reported being of non-Caucasian (92%) and/or Hispanic ethnicity (61%). Median age was 18 years (range:14-20). All had practiced vaginal sex, a third (33%) practiced anal sex, and most (77%) had also engaged in oral sex. At enrollment, 21% had not received the vaccine and 51% had received three doses. Prevalent HPV infection at enrollment was detected in 54% of cervical, 42% of anal and 20% of oral specimens, with vaccine types present in 7%, 6% and 1% of specimens, respectively. Comparing prevalence for vaccine types, the detection of HPV in the cervix of vaccinated compared to unvaccinated adolescents was significantly reduced: HPV6/11 (odds ratio [OR] = 0.19, 95%CI:0.06-0.75), HPV16 (OR = 0.31, 95%CI:0.11-0.88) and HPV18 (OR = 0.14, 95%CI:0.03-0.75). For anal HPV, the risk of detecting vaccine types HPV6/11 (OR = 0.27, 95%CI:0.10-0.72) and HPV18(OR = 0.12, 95%CI:0.01-1.16) were significantly reduced for vaccinated adolescents however, the risk for HPV16 was not significantly decreased (OR = 0.63, 95%CI:0.18-2.20).HPV Prevalence is extremely high in inner-city female adolescents. Administration of the HPV vaccine reduced the risk for cervical HPV; however continued follow-up is required to assess the protection for HPV at all sites in young women with high exposure

    Search for Gravitational Waves from Primordial Black Hole Binary Coalescences in the Galactic Halo

    Get PDF
    We use data from the second science run of the LIGO gravitational-wave detectors to search for the gravitational waves from primordial black hole (PBH) binary coalescence with component masses in the range 0.2--1.0M⊙1.0 M_\odot. The analysis requires a signal to be found in the data from both LIGO observatories, according to a set of coincidence criteria. No inspiral signals were found. Assuming a spherical halo with core radius 5 kpc extending to 50 kpc containing non-spinning black holes with masses in the range 0.2--1.0M⊙1.0 M_\odot, we place an observational upper limit on the rate of PBH coalescence of 63 per year per Milky Way halo (MWH) with 90% confidence.Comment: 7 pages, 4 figures, to be submitted to Phys. Rev.

    Using Mitochondrial and Nuclear Sequence Data for Disentangling Population Structure in Complex Pest Species: A Case Study with Dermanyssus gallinae

    Get PDF
    Among global changes induced by human activities, association of breakdown of geographical barriers and impoverishered biodiversity of agroecosystems may have a strong evolutionary impact on pest species. As a consequence of trade networks' expansion, secondary contacts between incipient species, if hybrid incompatibility is not yet reached, may result in hybrid swarms, even more when empty niches are available as usual in crop fields and farms. By providing important sources of genetic novelty for organisms to adapt in changing environments, hybridization may be strongly involved in the emergence of invasive populations

    Effects of chemokines on proliferation and apoptosis of human mesangial cells

    Get PDF
    BACKGROUND: Proliferation and apoptosis of mesangial cells (MC) are important mechanisms during nephrogenesis, for the maintenance of glomerular homeostasis as well as in renal disease and glomerular regeneration. Expression of chemokines and chemokine receptors by intrinsic renal cells, e.g. SLC/CCL21 on podocytes and CCR7 on MC is suggested to play a pivotal role during these processes. Therefore the effect of selected chemokines on MC proliferation and apoptosis was studied. METHODS: Proliferation assays, cell death assays including cell cycle analysis, hoechst stain and measurement of caspase-3 activity were performed. RESULTS: A dose-dependent, mesangioproliferative effect of the chemokine SLC/CCL21, which is constitutively expressed on human podocytes was seen via activation of the chemokine receptor CCR7, which is constitutively expressed on MC. In addition, in cultured MC SLC/CCL21 had a protective effect on cell survival in Fas-mediated apoptosis. The CXCR3 ligands IP-10/CXCL10 and Mig/CXCL9 revealed a proproliferative effect but did not influence apoptosis of MC. Both the CCR1 ligand RANTES/CCL5 and the amino-terminally modified RANTES analogue Met-RANTES which blocks CCR1 signalling had no effect on proliferation and apoptosis. CONCLUSIONS: The different effects of chemokines and their respective receptors on proliferation and apoptosis of MC suggest highly regulated, novel biological functions of chemokine/chemokine receptor pairs in processes involved in renal inflammation, regeneration and glomerular homeostasis

    Identification of Leishmania Proteins Preferentially Released in Infected Cells Using Change Mediated Antigen Technology (CMAT)

    Get PDF
    Although Leishmania parasites have been shown to modulate their host cell's responses to multiple stimuli, there is limited evidence that parasite molecules are released into infected cells. In this study, we present an implementation of the change mediated antigen technology (CMAT) to identify parasite molecules that are preferentially expressed in infected cells. Sera from mice immunized with cell lysates prepared from L. donovani or L. pifanoi-infected macrophages were adsorbed with lysates of axenically grown amastigotes of L. donovani or L. pifanoi, respectively, as well as uninfected macrophages. The sera were then used to screen inducible parasite expression libraries constructed with genomic DNA. Eleven clones from the L. pifanoi and the L. donovani screen were selected to evaluate the characteristics of the molecules identified by this approach. The CMAT screen identified genes whose homologs encode molecules with unknown function as well as genes that had previously been shown to be preferentially expressed in the amastigote form of the parasite. In addition a variant of Tryparedoxin peroxidase that is preferentially expressed within infected cells was identified. Antisera that were then raised to recombinant products of the clones were used to validate that the endogenous molecules are preferentially expressed in infected cells. Evaluation of the distribution of the endogenous molecules in infected cells showed that some of these molecules are secreted into parasitophorous vacuoles (PVs) and that they then traffic out of PVs in vesicles with distinct morphologies. This study is a proof of concept study that the CMAT approach can be applied to identify putative Leishmania parasite effectors molecules that are preferentially expressed in infected cells. In addition we provide evidence that Leishmania molecules traffic out of the PV into the host cell cytosol and nucleus

    Local Gene Silencing of Monocyte Chemoattractant Protein-1 Prevents Vulnerable Plaque Disruption in Apolipoprotein E-Knockout Mice

    Get PDF
    Monocyte chemoattractant protein-1 (MCP-1), a CC chemokine (CCL2), has been demonstrated to play important roles in atherosclerosis and becoming an important therapeutic target for atherosclerosis. The present study was undertaken to test the hypothesis that local RNAi of MCP-1 by site-specific delivery of adenovirus-mediated small hairpin RNA (shRNA) may enhance plaque stability and prevent plaque disruption in ApoE−/− mice. We designed an adenovirus-mediated shRNA against mouse MCP-1 (rAd5-MCP-1-shRNA). Male apolipoprotein E-knockout (ApoE−/−) mice (n = 120) were fed a high-fat diet and vulnerable plaques were induced by perivascular placement of constrictive collars around the carotid artery, intraperitoneal injection of lipopolysaccharide and stress stimulation. Mice were randomly divided into RNA interference (Ad-MCP-1i) group receiving local treatment of rAd5-MCP-1-shRNA suspension, Ad-EGFP group receiving treatment of rAd5-mediated negative shRNA and mock group receiving treatment of saline. Two weeks after treatment, plaque disruption rates were significantly lower in the Ad-MCP-1i group than in the Ad-EGFP group (13.3% vs. 60.0%, P = 0.01), and local MCP-1 expression was significantly inhibited in the Ad-MCP-1i group confirmed by immunostaining, qRT-PCR and western blot (P<0.001). Compared with the Ad-EGFP group, carotid plaques in the Ad-MCP-1i group showed increased levels of collagen and smooth muscle cells, and decreased levels of lipid and macrophages. The expression of inflammatory cytokines and activities of matrix metalloproteinases (MMPs) were lower in the Ad-MCP-1i group than in the Ad-EGFP group. In conclusion, site-specific delivery of adenoviral-mediated shRNA targeting mouse MCP-1 downregulated MCP-1 expression, turned a vulnerable plaque into a more stable plaque phenotype and prevented plaque disruption. A marked suppression of the local inflammatory cytokine expression may be the central mechanism involved
    • …
    corecore