73 research outputs found

    MicroRNA-34a upregulation during seizure-induced neuronal death

    Get PDF
    MicroRNAs (miRNAs) are short, noncoding RNAs that function as posttranscriptional regulators of gene expression by controlling translation of mRNAs. A subset of miRNAs may be critical for the control of cell death, including the p53-regulated miRNA, miR-34a. Because seizures activate p53, and p53-deficient mice are reportedly resistant to damage caused by prolonged seizures, we investigated the role of miR-34a in seizure-induced neuronal death in vivo. Status epilepticus was induced by intra-amygdala microinjection of kainic acid in mice. This led to an early (2 h) multifold upregulation of miR-34a in the CA3 and CA1 hippocampal subfields and lower protein levels of mitogen-activated kinase kinase kinase 9, a validated miR-34a target. Immunoprecipitation of the RNA-induced silencing complex component, Argonaute-2, eluted significantly higher levels of miR-34a after seizures. Injection of mice with pifithrin-α, a putative p53 inhibitor, prevented miR-34a upregulation after seizures. Intracerebroventricular injection of antagomirs targeting miR-34a reduced hippocampal miR-34a levels and had a small modulatory effect on apoptosis-associated signaling, but did not prevent hippocampal neuronal death in models of either severe or moderate severity status epilepticus. Thus, prolonged seizures cause subfield-specific, temporally restricted upregulation of miR-34a, which may be p53 dependent, but miR-34a is probably not important for seizure-induced neuronal death in this model

    An Integrated Approach to the Prediction of Chemotherapeutic Response in Patients with Breast Cancer

    Get PDF
    BACKGROUND: A major challenge in oncology is the selection of the most effective chemotherapeutic agents for individual patients, while the administration of ineffective chemotherapy increases mortality and decreases quality of life in cancer patients. This emphasizes the need to evaluate every patient's probability of responding to each chemotherapeutic agent and limiting the agents used to those most likely to be effective. METHODS AND RESULTS: Using gene expression data on the NCI-60 and corresponding drug sensitivity, mRNA and microRNA profiles were developed representing sensitivity to individual chemotherapeutic agents. The mRNA signatures were tested in an independent cohort of 133 breast cancer patients treated with the TFAC (paclitaxel, 5-fluorouracil, adriamycin, and cyclophosphamide) chemotherapy regimen. To further dissect the biology of resistance, we applied signatures of oncogenic pathway activation and performed hierarchical clustering. We then used mRNA signatures of chemotherapy sensitivity to identify alternative therapeutics for patients resistant to TFAC. Profiles from mRNA and microRNA expression data represent distinct biologic mechanisms of resistance to common cytotoxic agents. The individual mRNA signatures were validated in an independent dataset of breast tumors (P = 0.002, NPV = 82%). When the accuracy of the signatures was analyzed based on molecular variables, the predictive ability was found to be greater in basal-like than non basal-like patients (P = 0.03 and P = 0.06). Samples from patients with co-activated Myc and E2F represented the cohort with the lowest percentage (8%) of responders. Using mRNA signatures of sensitivity to other cytotoxic agents, we predict that TFAC non-responders are more likely to be sensitive to docetaxel (P = 0.04), representing a viable alternative therapy. CONCLUSIONS: Our results suggest that the optimal strategy for chemotherapy sensitivity prediction integrates molecular variables such as ER and HER2 status with corresponding microRNA and mRNA expression profiles. Importantly, we also present evidence to support the concept that analysis of molecular variables can present a rational strategy to identifying alternative therapeutic opportunities

    Genomic analysis of microRNA time-course expression in liver of mice treated with genotoxic carcinogen N-ethyl-N-nitrosourea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Dysregulated expression of microRNAs (miRNAs) has been previously observed in human cancer tissues and shown promise in defining tumor status. However, there is little information as to if or when expression changes of miRNAs occur in normal tissues after carcinogen exposure.</p> <p>Results</p> <p>To explore the possible time-course changes of miRNA expression induced by a carcinogen, we treated mice with one dose of 120 mg/kg <it>N</it>-ethyl-<it>N</it>-nitrosourea (ENU), a model genotoxic carcinogen, and vehicle control. The miRNA expression profiles were assessed in the mouse livers in a time-course design. miRNAs were isolated from the livers at days 1, 3, 7, 15, 30 and 120 after the treatment and their expression was determined using a miRNA PCR Array. Principal component analysis of the miRNA expression profiles showed that miRNA expression at post-treatment days (PTDs) 7 and 15 were different from those at the other time points and the control. The number of differentially expressed miRNAs (DEMs) changed over time (3, 5, 14, 32, 5 and 5 at PTDs 1, 3, 7, 15, 30 and 120, respectively). The magnitude of the expression change varied with time with the highest changes at PTDs 7 or 15 for most of the DEMs. In silico functional analysis of the DEMs at PTDs 7 and 15 indicated that the major functions of these ENU-induced DEMs were associated with DNA damage, DNA repair, apoptosis and other processes related to carcinogenesis.</p> <p>Conclusion</p> <p>Our results showed that many miRNAs changed their expression to respond the exposure of the genotoxic carcinogen ENU and the number and magnitude of the changes were highest at PTDs 7 to 15. Thus, one to two weeks after the exposure is the best time for miRNA expression sampling.</p

    MicroRNA-34a Inhibits the Proliferation and Metastasis of Osteosarcoma Cells Both In Vitro and In Vivo

    Get PDF
    BACKGROUND: MicroRNAs (miRNAs) are a class of endogenously expressed, small noncoding RNAs, which suppress its target mRNAs at the post-transcriptional level. Studies have demonstrated that miR-34a, which is a direct target of the p53 tumor suppressor gene, functions as a tumor suppressor and is associated with the tumor growth and metastasis of various human malignances. However, the role of miR-34a in osteosarcoma has not been totally elucidated. In the present study, the effects of miR-34a on osteosarcoma and the possible mechanism by which miR-34a affected the tumor growth and metastasis of osteosarcoma were investigated. METHODOLOGY/PRINCIPAL FINDING: Over-expression of miR-34a partially inhibited proliferation, migration and invasion of osteosarcoma cells in vitro, as well as the tumor growth and pulmonary metastasis of osteosarcoma cells in vivo. c-Met is a target of miR-34a, and regulates the migration and invasion of osteosarcoma cells. Osteosarcoma cells over-expressing miR-34a exhibited a significant decrease in the expression levels of c-Met mRNA and protein simultaneously. Finally, the results from bioinformatics analysis demonstrated that there were multiple putative targets of miR-34a that may be associated with the proliferation and metastasis of osteosarcoma, including factors in Wnt and Notch signaling pathways. CONCLUSION/SIGNIFICANCE: The results presented in this study demonstrated that over-expression of miR-34a could inhibit the tumor growth and metastasis of osteosarcoma probably through down regulating c-Met. And there are other putative miR-34a target genes beside c-Met which could potentially be key players in the development of osteosarcoma. Since pulmonary metastases are responsible for mortality of patient carrying osteosarcoma, miR-34a may prove to be a promising gene therapeutic agent. It will be interesting to further investigate the mechanism by which miR-34a functions as a tumor suppressor gene in osteosarcoma

    BMC Psychol

    Get PDF
    Background Preschoolers regularly display disruptive behaviors in child care settings because they have not yet developed the social skills necessary to interact prosocially with others. Disruptive behaviors interfere with daily routines and can lead to conflict with peers and educators. We investigated the impact of a social skills training program led by childcare educators on children’s social behaviors and tested whether the impact varied according to the child’s sex and family socio-economic status. Methods Nineteen public Child Care Centers (CCC, n = 361 children) located in low socio-economic neighborhoods of Montreal, Canada, were randomized into one of two conditions: 1) intervention (n = 10 CCC; 185 children) or 2) wait list control (n = 9 CCC; 176 children). Educators rated children’s behaviors (i.e., disruptive and prosocial behaviors) before and after the intervention. Hierarchical linear mixed models were used to account for the nested structure of the data. Results At pre-intervention, no differences in disruptive and prosocial behaviors were observed between the experimental conditions. At post-intervention, we found a significant sex by intervention interaction (β intervention by sex = − 1.19, p = 0.04) indicating that girls in the intervention condition exhibited lower levels of disruptive behaviors compared to girls in the control condition (f2 effect size = − 0.15). There was no effect of the intervention for boys. Conclusions Girls may benefit more than boys from social skills training offered in the child care context. Studies with larger sample sizes and greater intervention intensity are needed to confirm the results

    Racism as a determinant of health: a systematic review and meta-analysis

    Get PDF
    Despite a growing body of epidemiological evidence in recent years documenting the health impacts of racism, the cumulative evidence base has yet to be synthesized in a comprehensive meta-analysis focused specifically on racism as a determinant of health. This meta-analysis reviewed the literature focusing on the relationship between reported racism and mental and physical health outcomes. Data from 293 studies reported in 333 articles published between 1983 and 2013, and conducted predominately in the U.S., were analysed using random effects models and mean weighted effect sizes. Racism was associated with poorer mental health (negative mental health: r = -.23, 95% CI [-.24,-.21], k = 227; positive mental health: r = -.13, 95% CI [-.16,-.10], k = 113), including depression, anxiety, psychological stress and various other outcomes. Racism was also associated with poorer general health (r = -.13 (95% CI [-.18,-.09], k = 30), and poorer physical health (r = -.09, 95% CI [-.12,-.06], k = 50). Moderation effects were found for some outcomes with regard to study and exposure characteristics. Effect sizes of racism on mental health were stronger in cross-sectional compared with longitudinal data and in non-representative samples compared with representative samples. Age, sex, birthplace and education level did not moderate the effects of racism on health. Ethnicity significantly moderated the effect of racism on negative mental health and physical health: the association between racism and negative mental health was significantly stronger for Asian American and Latino(a) American participants compared with African American participants, and the association between racism and physical health was significantly stronger for Latino(a) American participants compared with African American participants.<br /
    corecore