133 research outputs found

    Temporally-Controlled Site-Specific Recombination in Zebrafish

    Get PDF
    Conventional use of the site-specific recombinase Cre is a powerful technology in mouse, but almost absent in other vertebrate model organisms. In zebrafish, Cre-mediated recombination efficiency was previously very low. Here we show that using transposon-mediated transgenesis, Cre is in fact highly efficient in this organism. Furthermore, temporal control of recombination can be achieved by using the ligand-inducible CreERT2. Site-specific recombination only occurs upon administration of the drug tamoxifen (TAM) or its active metabolite, 4-hydroxy-tamoxifen (4-OHT). Cre-mediated recombination is detectable already 4 or 2 hours after administration of TAM or 4-OHT, demonstrating fast recombination kinetics. In addition, low doses of TAM allow mosaic labeling of single cells. Combined, our results show that conditional Cre/lox will be a valuable tool for both, embryonic and adult zebrafish studies. Furthermore, single copy insertion transgenesis of Cre/lox constructs suggest a strategy suitable also for other organisms

    Analysis of opo cis-regulatory landscape uncovers Vsx2 requirement in early eye morphogenesis

    Get PDF
    The self-organized morphogenesis of the vertebrate optic cup entails coupling the activation of the retinal gene regulatory network to the constriction-driven infolding of the retinal epithelium. Yet the genetic mechanisms underlying this coordination remain largely unexplored. Through phylogenetic footprinting and transgenesis in zebrafish, here we examine the cis-regulatory landscape of opo, an endocytosis regulator essential for eye morphogenesis. Among the different conserved enhancers identified, we isolate a single retina-specific element (H6_10137) and show that its activity depends on binding sites for the retinal determinant Vsx2. Gain- and loss-of-function experiments and ChIP analyses reveal that Vsx2 regulates opo expression through direct binding to this retinal enhancer. Furthermore, we show that vsx2 knockdown impairs the primary optic cup folding. These data support a model by which vsx2, operating through the effector gene opo, acts as a central transcriptional node that coordinates neural retina patterning and optic cup invagination in zebrafish.info:eu-repo/semantics/publishedVersio

    Accuracy of Immunodiagnostic Tests for Active Tuberculosis Using Single and Combined Results: A Multicenter TBNET-Study

    Get PDF
    The clinical application of IFN-gamma release assays (IGRAs) has recently improved the diagnosis of latent tuberculosis infection. In a multicenter study of the Tuberculosis Network European Trialsgroup (TBNET) we aimed to ascertain in routine clinical practice the accuracy of a novel assay using selected peptides encoded in the mycobacterial genomic region of difference (RD) 1 for the diagnosis of active tuberculosis in comparison with tuberculin skin test (TST), QuantiFERON-TB GOLD In-Tube (Cellestis Ltd., Carnegie, Australia) and T-SPOT.TB (Oxfordimmunotec, Abingdon, UK)

    Immunization with Single-Cycle SIV Significantly Reduces Viral Loads After an Intravenous Challenge with SIVmac239

    Get PDF
    Strains of simian immunodeficiency virus (SIV) that are limited to a single cycle of infection were evaluated for the ability to elicit protective immunity against wild-type SIVmac239 infection of rhesus macaques by two different vaccine regimens. Six animals were inoculated at 8-week intervals with 6 identical doses consisting of a mixture of three different envelope variants of single-cycle SIV (scSIV). Six additional animals were primed with a mixture of cytoplasmic domain-truncated envelope variants of scSIV and boosted with two doses of vesicular stomatitis virus glycoprotein (VSV G) trans-complemented scSIV. While both regimens elicited detectable virus-specific T cell responses, SIV-specific T cell frequencies were more than 10-fold higher after boosting with VSV G trans-complemented scSIV (VSV G scSIV). Broad T cell recognition of multiple viral antigens and Gag-specific CD4+ T cell responses were also observed after boosting with VSV G scSIV. With the exception of a single animal in the repeated immunization group, all of the animals became infected following an intravenous challenge with SIVmac239. However, significantly lower viral loads and higher memory CD4+ T cell counts were observed in both immunized groups relative to an unvaccinated control group. Indeed, both scSIV immunization regimens resulted in containment of SIVmac239 replication after challenge that was as good as, if not better than, what has been achieved by other non-persisting vaccine vectors that have been evaluated in this challenge model. Nevertheless, the extent of protection afforded by scSIV was not as good as typically conferred by persistent infection with live, attenuated SIV. These observations have potentially important implications to the design of an effective AIDS vaccine, since they suggest that ongoing stimulation of virus-specific immune responses may be essential to achieving the degree of protection afforded by live, attenuated SIV

    A Novel CCR5 Mutation Common in Sooty Mangabeys Reveals SIVsmm Infection of CCR5-Null Natural Hosts and Efficient Alternative Coreceptor Use In Vivo

    Get PDF
    In contrast to HIV infection in humans and SIV in macaques, SIV infection of natural hosts including sooty mangabeys (SM) is non-pathogenic despite robust virus replication. We identified a novel SM CCR5 allele containing a two base pair deletion (Δ2) encoding a truncated molecule that is not expressed on the cell surface and does not support SIV entry in vitro. The allele was present at a 26% frequency in a large SM colony, along with 3% for a CCR5Δ24 deletion allele that also abrogates surface expression. Overall, 8% of animals were homozygous for defective CCR5 alleles and 41% were heterozygous. The mutant allele was also present in wild SM in West Africa. CD8+ and CD4+ T cells displayed a gradient of CCR5 expression across genotype groups, which was highly significant for CD8+ cells. Remarkably, the prevalence of natural SIVsmm infection was not significantly different in animals lacking functional CCR5 compared to heterozygous and homozygous wild-type animals. Furthermore, animals lacking functional CCR5 had robust plasma viral loads, which were only modestly lower than wild-type animals. SIVsmm primary isolates infected both homozygous mutant and wild-type PBMC in a CCR5-independent manner in vitro, and Envs from both CCR5-null and wild-type infected animals used CXCR6, GPR15 and GPR1 in addition to CCR5 in transfected cells. These data clearly indicate that SIVsmm relies on CCR5-independent entry pathways in SM that are homozygous for defective CCR5 alleles and, while the extent of alternative coreceptor use in SM with CCR5 wild type alleles is uncertain, strongly suggest that SIVsmm tropism and host cell targeting in vivo is defined by the distribution and use of alternative entry pathways in addition to CCR5. SIVsmm entry through alternative pathways in vivo raises the possibility of novel CCR5-negative target cells that may be more expendable than CCR5+ cells and enable the virus to replicate efficiently without causing disease in the face of extremely restricted CCR5 expression seen in SM and several other natural host species

    Estimating the Fitness Cost of Escape from HLA Presentation in HIV-1 Protease and Reverse Transcriptase

    Get PDF
    Human immunodeficiency virus (HIV-1) is, like most pathogens, under selective pressure to escape the immune system of its host. In particular, HIV-1 can avoid recognition by cytotoxic T lymphocytes (CTLs) by altering the binding affinity of viral peptides to human leukocyte antigen (HLA) molecules, the role of which is to present those peptides to the immune system. It is generally assumed that HLA escape mutations carry a replicative fitness cost, but these costs have not been quantified. In this study, we assess the replicative cost of mutations which are likely to escape presentation by HLA molecules in the region of HIV-1 protease and reverse transcriptase. Specifically, we combine computational approaches for prediction of in vitro replicative fitness and peptide binding affinity to HLA molecules. We find that mutations which impair binding to HLA-A molecules tend to have lower in vitro replicative fitness than mutations which do not impair binding to HLA-A molecules, suggesting that HLA-A escape mutations carry higher fitness costs than non-escape mutations. We argue that the association between fitness and HLA-A binding impairment is probably due to an intrinsic cost of escape from HLA-A molecules, and these costs are particularly strong for HLA-A alleles associated with efficient virus control. Counter-intuitively, we do not observe a significant effect in the case of HLA-B, but, as discussed, this does not argue against the relevance of HLA-B in virus control. Overall, this article points to the intriguing possibility that HLA-A molecules preferentially target more conserved regions of HIV-1, emphasizing the importance of HLA-A genes in the evolution of HIV-1 and RNA viruses in general
    corecore