29 research outputs found

    The association between alcohol use, alcohol use disorders and tuberculosis (TB). A systematic review

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In 2004, tuberculosis (TB) was responsible for 2.5% of global mortality (among men 3.1%; among women 1.8%) and 2.2% of global burden of disease (men 2.7%; women 1.7%). The present work portrays accumulated evidence on the association between alcohol consumption and TB with the aim to clarify the nature of the relationship.</p> <p>Methods</p> <p>A systematic review of existing scientific data on the association between alcohol consumption and TB, and on studies relevant for clarification of causality was undertaken.</p> <p>Results</p> <p>There is a strong association between heavy alcohol use/alcohol use disorders (AUD) and TB. A meta-analysis on the risk of TB for these factors yielded a pooled relative risk of 2.94 (95% CI: 1.89-4.59). Numerous studies show pathogenic impact of alcohol on the immune system causing susceptibility to TB among heavy drinkers. In addition, there are potential social pathways linking AUD and TB. Heavy alcohol use strongly influences both the incidence and the outcome of the disease and was found to be linked to altered pharmacokinetics of medicines used in treatment of TB, social marginalization and drift, higher rate of re-infection, higher rate of treatment defaults and development of drug-resistant forms of TB. Based on the available data, about 10% of the TB cases globally were estimated to be attributable to alcohol.</p> <p>Conclusion</p> <p>The epidemiological and other evidence presented indicates that heavy alcohol use/AUD constitute a risk factor for incidence and re-infection of TB. Consequences for prevention and clinical interventions are discussed.</p

    Use of plastic-based analytical device, smartphone and chemometric tools to discriminate amines

    No full text
    Amine-based volatile compounds released bymicroorganisms offer an alternative diagnostic approach for the identification of foodborne pathogens. Our objective has been to solvent cast cellulose acetate membranes to immobilise dyes and to use the resultant membranes as a plastic device to discriminate between different types of amines (triethylamine, isobutylamine, isopentylamine). The plastic device consisted of an array of membranes with five pH indicators (namely alizarin, bromophenol blue, chlorophenol red, methyl red and thymol blue). To analyse the data using a portable instrument, we used an iPhone (R) to obtain images and to extract red, green and blue colours (RGB) using in-house software before and after contact with each individual amine. All the RGB values extracted for each analyte allowed us to generate a unique colour pattern, which was used as input for non-supervised pattern recognition methods. Based on this analysis, it was possible to clearly discriminate between the amines studied without any misclassification, demonstrating that the device is well-suited for large-scale applications such as non-destructive methods to discriminate amines and, in future, for smart packaging applications in order to give early warning of rotting food that may lead to food poisoning. Additionally, a semi-quantitative analysis was performed and we have demonstrated that it is possible to quantify concentrations of amines down to 1 ppm
    corecore