77 research outputs found

    Loss of Function of TET2 Cooperates with Constitutively Active KIT in Murine and Human Models of Mastocytosis

    Get PDF
    Systemic Mastocytosis (SM) is a clonal disease characterized by abnormal accumulation of mast cells in multiple organs. Clinical presentations of the disease vary widely from indolent to aggressive forms, and to the exceedingly rare mast cell leukemia. Current treatment of aggressive SM and mast cell leukemia is unsatisfactory. An imatinib-resistant activating mutation of the receptor tyrosine kinase KIT (KIT D816V) is most frequently present in transformed mast cells and is associated with all clinical forms of the disease. Thus the etiology of the variable clinical aggressiveness of abnormal mast cells in SM is unclear. TET2 appears to be mutated in primary human samples in aggressive types of SM, suggesting a possible role in disease modification. In this report, we demonstrate the cooperation between KIT D816V and loss of function of TET2 in mast cell transformation and demonstrate a more aggressive phenotype in a murine model of SM when both mutations are present in progenitor cells. We exploit these findings to validate a combination treatment strategy targeting the epigenetic deregulation caused by loss of TET2 and the constitutively active KIT receptor for the treatment of patients with aggressive SM

    Tet2 disruption leads to enhanced self-renewal and altered differentiation of fetal liver hematopoietic stem cells

    Get PDF
    Somatic mutation of ten-eleven translocation 2 (TET2) gene is frequently found in human myeloid malignancies. Recent reports showed that loss of Tet2 led to pleiotropic hematopoietic abnormalities including increased competitive repopulating capacity of bone marrow (BM) HSCs and myeloid transformation. However, precise impact of Tet2 loss on the function of fetal liver (FL) HSCs has not been examined. Here we show that disruption of Tet2 results in the expansion of Lin−Sca-1+c-Kit+ (LSK) cells in FL. Furthermore, Tet2 loss led to enhanced self-renewal and long-term repopulating capacity of FL-HSCs in in vivo serial transplantation assay. Disruption of Tet2 in FL also led to altered differentiation of mature blood cells, expansion of common myeloid progenitors and increased resistance for hematopoietic progenitor cells (HPCs) to differentiation stimuli in vitro. These results demonstrate that Tet2 plays a critical role in homeostasis of HSCs and HPCs not only in the BM, but also in FL

    Combined mutations of ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 and WT1 genes in myelodysplastic syndromes and acute myeloid leukemias

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gene mutation is an important mechanism of myeloid leukemogenesis. However, the number and combination of gene mutated in myeloid malignancies is still a matter of investigation.</p> <p>Methods</p> <p>We searched for mutations in the <it>ASXL1, CBL, FLT3, IDH1, IDH2, JAK2, KRAS, NPM1, NRAS, RUNX1, TET2 </it>and <it>WT1 </it>genes in 65 myelodysplastic syndromes (MDSs) and 64 acute myeloid leukemias (AMLs) without balanced translocation or complex karyotype.</p> <p>Results</p> <p>Mutations in <it>ASXL1 </it>and <it>CBL </it>were frequent in refractory anemia with excess of blasts. Mutations in <it>TET2 </it>occurred with similar frequency in MDSs and AMLs and associated equally with either <it>ASXL1 </it>or <it>NPM1 </it>mutations. Mutations of <it>RUNX1 </it>were mutually exclusive with <it>TET2 </it>and combined with <it>ASXL1 </it>but not with <it>NPM1</it>. Mutations in <it>FLT3 (</it>mutation and internal tandem duplication), <it>IDH1</it>, <it>IDH2</it>, <it>NPM1 </it>and <it>WT1 </it>occurred primarily in AMLs.</p> <p>Conclusion</p> <p>Only 14% MDSs but half AMLs had at least two mutations in the genes studied. Based on the observed combinations and exclusions we classified the 12 genes into four classes and propose a highly speculative model that at least a mutation in one of each class is necessary for developing AML with simple or normal karyotype.</p

    A Novel Protein Isoform of the Multicopy Human NAIP Gene Derives from Intragenic Alu SINE Promoters

    Get PDF
    The human neuronal apoptosis inhibitory protein (NAIP) gene is no longer principally considered a member of the Inhibitor of Apoptosis Protein (IAP) family, as its domain structure and functions in innate immunity also warrant inclusion in the Nod-Like Receptor (NLR) superfamily. NAIP is located in a region of copy number variation, with one full length and four partly deleted copies in the reference human genome. We demonstrate that several of the NAIP paralogues are expressed, and that novel transcripts arise from both internal and upstream transcription start sites. Remarkably, two internal start sites initiate within Alu short interspersed element (SINE) retrotransposons, and a third novel transcription start site exists within the final intron of the GUSBP1 gene, upstream of only two NAIP copies. One Alu functions alone as a promoter in transient assays, while the other likely combines with upstream L1 sequences to form a composite promoter. The novel transcripts encode shortened open reading frames and we show that corresponding proteins are translated in a number of cell lines and primary tissues, in some cases above the level of full length NAIP. Interestingly, some NAIP isoforms lack their caspase-sequestering motifs, suggesting that they have novel functions. Moreover, given that human and mouse NAIP have previously been shown to employ endogenous retroviral long terminal repeats as promoters, exaptation of Alu repeats as additional promoters provides a fascinating illustration of regulatory innovations adopted by a single gene

    Association between Acquired Uniparental Disomy and Homozygous Mutations and HER2/ER/PR Status in Breast Cancer

    Get PDF
    Background: Genetic alterations in cellular signaling networks are a hallmark of cancer, however, effective methods to discover them are lacking. A novel form of abnormality called acquired uniparental disomy (aUPD) was recently found to pinpoint the region of mutated genes in various cancers, thereby identifying the region for next-generation sequencing. Methods/Principal Findings: We retrieved large genomic data sets from the Gene Expression Omnibus database to perform genome-wide analysis of aUPD in breast tumor samples and cell lines using approaches that can reliably detect aUPD. Aupd was identified in 52.29% of the tumor samples. The most frequent aUPD regions were located at chromosomes 2q, 3p, 5q, 9p, 9q, 10q, 11q, 13q, 14q and 17q. We evaluated the data for any correlation between the most frequent aUPD regions and HER2/neu, ER, and PR status, and found a statistically significant correlation between the recurrent regions of aUPD and triple negative (TN) breast cancers. aUPD at chromosome 17q (VEZF1, WNT3), 3p (SUMF1, GRM7), 9p (MTAP, NFIB) and 11q (CASP1, CASP4, CASP5) are predictors for TN. The frequency of aUPD was found to be significantly higher in TN breast cancer cases compared to HER2/neu-positive and/or ER or PR-positive cases. Furthermore, using previously published mutation data, we found TP53 homozygously mutated in cell lines having aUPD in that locus. Conclusions/Significance: We conclude that aUPD is a common and non-random molecular feature of breast cancer that is most prominent in triple negative cases. As aUPD regions are different among the main pathological subtypes, specific aUPD regions may aid the sub-classification of breast cancer. In addition, we provide statistical support using TP53 as an example that identifying aUPD regions can be an effective approach in finding aberrant genes. We thus conclu

    Mapping autism risk loci using genetic linkage and chromosomal rearrangements.

    Get PDF
    International audienceAutism spectrum disorders (ASDs) are common, heritable neurodevelopmental conditions. The genetic architecture of ASDs is complex, requiring large samples to overcome heterogeneity. Here we broaden coverage and sample size relative to other studies of ASDs by using Affymetrix 10K SNP arrays and 1,181 [corrected] families with at least two affected individuals, performing the largest linkage scan to date while also analyzing copy number variation in these families. Linkage and copy number variation analyses implicate chromosome 11p12-p13 and neurexins, respectively, among other candidate loci. Neurexins team with previously implicated neuroligins for glutamatergic synaptogenesis, highlighting glutamate-related genes as promising candidates for contributing to ASDs

    Apoptosis-Related Gene Expression Profiling in Hematopoietic Cell Fractions of MDS Patients

    Get PDF
    Contains fulltext : 168172.pdf (publisher's version ) (Open Access)Although the vast majority of patients with a myelodysplastic syndrome (MDS) suffer from cytopenias, the bone marrow is usually normocellular or hypercellular. Apoptosis of hematopoietic cells in the bone marrow has been implicated in this phenomenon. However, in MDS it remains only partially elucidated which genes are involved in this process and which hematopoietic cells are mainly affected. We employed sensitive real-time PCR technology to study 93 apoptosis-related genes and gene families in sorted immature CD34+ and the differentiating erythroid (CD71+) and monomyeloid (CD13/33+) bone marrow cells. Unsupervised cluster analysis of the expression signature readily distinguished the different cellular bone marrow fractions (CD34+, CD71+ and CD13/33+) from each other, but did not discriminate patients from healthy controls. When individual genes were regarded, several were found to be differentially expressed between patients and controls. Particularly, strong over-expression of BIK (BCL2-interacting killer) was observed in erythroid progenitor cells of low- and high-risk MDS patients (both p = 0.001) and TNFRSF4 (tumor necrosis factor receptor superfamily 4) was down-regulated in immature hematopoietic cells (p = 0.0023) of low-risk MDS patients compared to healthy bone marrow

    Mutations with epigenetic effects in myeloproliferative neoplasms and recent progress in treatment: Proceedings from the 5th International Post-ASH Symposium

    Get PDF
    Immediately following the 2010 annual American Society of Hematology (ASH) meeting, the 5th International Post-ASH Symposium on Chronic Myelogenous Leukemia and BCR-ABL1-Negative Myeloproliferative Neoplasms (MPNs) took place on 7–8 December 2010 in Orlando, Florida, USA. During this meeting, the most recent advances in laboratory research and clinical practice, including those that were presented at the 2010 ASH meeting, were discussed among recognized authorities in the field. The current paper summarizes the proceedings of this meeting in BCR-ABL1-negative MPN. We provide a detailed overview of new mutations with putative epigenetic effects (TET oncogene family member 2 (TET2), additional sex comb-like 1 (ASXL1), isocitrate dehydrogenase (IDH) and enhancer of zeste homolog 2 (EZH2)) and an update on treatment with Janus kinase (JAK) inhibitors, pomalidomide, everolimus, interferon-α, midostaurin and cladribine. In addition, the new ‘Dynamic International Prognostic Scoring System (DIPSS)-plus' prognostic model for primary myelofibrosis (PMF) and the clinical relevance of distinguishing essential thrombocythemia from prefibrotic PMF are discussed

    Novel mutations and their functional and clinical relevance in myeloproliferative neoplasms: JAK2, MPL, TET2, ASXL1, CBL, IDH and IKZF1

    Get PDF
    Myeloproliferative neoplasms (MPNs) originate from genetically transformed hematopoietic stem cells that retain the capacity for multilineage differentiation and effective myelopoiesis. Beginning in early 2005, a number of novel mutations involving Janus kinase 2 (JAK2), Myeloproliferative Leukemia Virus (MPL), TET oncogene family member 2 (TET2), Additional Sex Combs-Like 1 (ASXL1), Casitas B-lineage lymphoma proto-oncogene (CBL), Isocitrate dehydrogenase (IDH) and IKAROS family zinc finger 1 (IKZF1) have been described in BCR-ABL1-negative MPNs. However, none of these mutations were MPN specific, displayed mutual exclusivity or could be traced back to a common ancestral clone. JAK2 and MPL mutations appear to exert a phenotype-modifying effect and are distinctly associated with polycythemia vera, essential thrombocythemia and primary myelofibrosis; the corresponding mutational frequencies are ∼99, 55 and 65% for JAK2 and 0, 3 and 10% for MPL mutations. The incidence of TET2, ASXL1, CBL, IDH or IKZF1 mutations in these disorders ranges from 0 to 17% these latter mutations are more common in chronic (TET2, ASXL1, CBL) or juvenile (CBL) myelomonocytic leukemias, mastocytosis (TET2), myelodysplastic syndromes (TET2, ASXL1) and secondary acute myeloid leukemia, including blast-phase MPN (IDH, ASXL1, IKZF1). The functional consequences of MPN-associated mutations include unregulated JAK-STAT (Janus kinase/signal transducer and activator of transcription) signaling, epigenetic modulation of transcription and abnormal accumulation of oncoproteins. However, it is not clear as to whether and how these abnormalities contribute to disease initiation, clonal evolution or blastic transformation
    corecore