182 research outputs found

    Genetic randomization reveals functional relationships among morphologic and tissue-quality traits that contribute to bone strength and fragility

    Get PDF
    We examined femora from adult AXB/BXA recombinant inbred (RI) mouse strains to identify skeletal traits that are functionally related and to determine how functional interactions among these traits contribute to genetic variability in whole-bone stiffness, strength, and toughness. Randomization of A/J and C57BL/6J genomic regions resulted in each adult male and female RI strain building mechanically functional femora by assembling unique sets of morphologic and tissue-quality traits. A correlation analysis was conducted using the mean trait values for each RI strain. A third of the 66 correlations examined were significant, indicating that many bone traits covaried or were functionally related. Path analysis revealed important functional interactions among bone slenderness, cortical thickness, and tissue mineral density. The path coefficients describing these functional relations were similar for both sexes. The causal relationship among these three traits suggested that cellular processes during growth simultaneously regulate bone slenderness, cortical thickness, and tissue mineral density so that the combination of traits is sufficiently stiff and strong to satisfy daily loading demands. A disadvantage of these functional interactions was that increases in tissue mineral density also deleteriously affected tissue ductility. Consequently, slender bones with high mineral density may be stiff and strong but they are also brittle. Thus, genetically randomized mouse strains revealed a basic biological paradigm that allows for flexibility in building bones that are functional for daily activities but that creates preferred sets of traits under extreme loading conditions. Genetic or environmental perturbations that alter these functional interactions during growth would be expected to lead to loss of function and suboptimal adult bone quality

    Transient peak-strain matching partially recovers the age-impaired mechanoadaptive cortical bone response

    Get PDF
    Mechanoadaptation maintains bone mass and architecture; its failure underlies age-related decline in bone strength. It is unclear whether this is due to failure of osteocytes to sense strain, osteoblasts to form bone or insufficient mechanical stimulus. Mechanoadaptation can be restored to aged bone by surgical neurectomy, suggesting that changes in loading history can rescue mechanoadaptation. We use non-biased, whole-bone tibial analyses, along with characterisation of surface strains and ensuing mechanoadaptive responses in mice at a range of ages, to explore whether sufficient load magnitude can activate mechanoadaptation in aged bone. We find that younger mice adapt when imposed strains are lower than in mature and aged bone. Intriguingly, imposition of short-term, high magnitude loading effectively primes cortical but not trabecular bone of aged mice to respond. This response was regionally-matched to highest strains measured by digital image correlation and to osteocytic mechanoactivation. These data indicate that aged bone’s loading response can be partially recovered, non-invasively by transient, focal high strain regions. Our results indicate that old murine bone does respond to load when the loading is of sufficient magnitude, and bones’ age-related adaptation failure may be due to insufficient mechanical stimulus to trigger mechanoadaptation

    Reliability of clinical tests to evaluate nerve function and mechanosensitivity of the upper limb peripheral nervous system

    Get PDF
    BACKGROUND: Clinical tests to assess peripheral nerve disorders can be classified into two categories: tests for afferent/efferent nerve function such as nerve conduction (bedside neurological examination) and tests for increased mechanosensitivity (e.g. upper limb neurodynamic tests (ULNTs) and nerve palpation). Reliability reports of nerve palpation and the interpretation of neurodynamic tests are scarce. This study therefore investigated the intertester reliability of nerve palpation and ULNTs. ULNTs were interpreted based on symptom reproduction and structural differentiation. To put the reliability of these tests in perspective, a comparison with the reliability of clinical tests for nerve function was made. METHODS: Two experienced clinicians examined 31 patients with unilateral arm and/or neck pain. The examination included clinical tests for nerve function (sensory testing, reflexes and manual muscle testing (MMT)) and mechanosensitivity (ULNTs and palpation of the median, radial and ulnar nerve). Kappa statistics were calculated to evaluate intertester reliability. A meta-analysis determined an overall kappa for the domains with multiple kappa values (MMT, ULNT, palpation). We then compared the difference in reliability between the tests of mechanosensitivity and nerve function using a one-sample t-test. RESULTS: We observed moderate to substantial reliability for the tests for afferent/efferent nerve function (sensory testing: kappa = 0.53; MMT: kappa = 0.68; no kappa was calculated for reflexes due to a lack of variation). Tests to investigate mechanosensitivity demonstrated moderate reliability (ULNT: kappa = 0.45; palpation: kappa = 0.59). When compared statistically, there was no difference in reliability for tests for nerve function and mechanosensitivity (p = 0.06). CONCLUSION: This study demonstrates that clinical tests which evaluate increased nerve mechanosensitivity and afferent/efferent nerve function have comparable moderate to substantial reliability. To further investigate the clinometric properties of these tests, more studies are needed to evaluate their validity

    A direct physical interaction between Nanog and Sox2 regulates embryonic stem cell self-renewal

    Get PDF
    Embryonic stem (ES) cell self-renewal efficiency is determined by the Nanog protein level. However, the protein partners of Nanog that function to direct self-renewal are unclear. Here, we identify a Nanog interactome of over 130 proteins including transcription factors, chromatin modifying complexes, phosphorylation and ubiquitination enzymes, basal transcriptional machinery members, and RNA processing factors. Sox2 was identified as a robust interacting partner of Nanog. The purified Nanog–Sox2 complex identified a DNA recognition sequence present in multiple overlapping Nanog/Sox2 ChIP-Seq data sets. The Nanog tryptophan repeat region is necessary and sufficient for interaction with Sox2, with tryptophan residues required. In Sox2, tyrosine to alanine mutations within a triple-repeat motif (S X T/S Y) abrogates the Nanog–Sox2 interaction, alters expression of genes associated with the Nanog-Sox2 cognate sequence, and reduces the ability of Sox2 to rescue ES cell differentiation induced by endogenous Sox2 deletion. Substitution of the tyrosines with phenylalanine rescues both the Sox2–Nanog interaction and efficient self-renewal. These results suggest that aromatic stacking of Nanog tryptophans and Sox2 tyrosines mediates an interaction central to ES cell self-renewal

    Dynamics and transport near quantum-critical points

    Full text link
    The physics of non-zero temperature dynamics and transport near quantum-critical points is discussed by a detailed study of the O(N)-symmetric, relativistic, quantum field theory of a N-component scalar field in dd spatial dimensions. A great deal of insight is gained from a simple, exact solution of the long-time dynamics for the N=1 d=1 case: this model describes the critical point of the Ising chain in a transverse field, and the dynamics in all the distinct, limiting, physical regions of its finite temperature phase diagram is obtained. The N=3, d=1 model describes insulating, gapped, spin chain compounds: the exact, low temperature value of the spin diffusivity is computed, and compared with NMR experiments. The N=3, d=2,3 models describe Heisenberg antiferromagnets with collinear N\'{e}el correlations, and experimental realizations of quantum-critical behavior in these systems are discussed. Finally, the N=2, d=2 model describes the superfluid-insulator transition in lattice boson systems: the frequency and temperature dependence of the the conductivity at the quantum-critical coupling is described and implications for experiments in two-dimensional thin films and inversion layers are noted.Comment: Lectures presented at the NATO Advanced Study Institute on "Dynamical properties of unconventional magnetic systems", Geilo, Norway, April 2-12, 1997, edited by A. Skjeltorp and D. Sherrington, Kluwer Academic, to be published. 46 page

    Association between diabetes mellitus and active tuberculosis: A systematic review and meta-analysis.

    Get PDF
    The burgeoning epidemic of diabetes mellitus (DM) is one of the major global health challenges. We systematically reviewed the published literature to provide a summary estimate of the association between DM and active tuberculosis (TB). We searched Medline and EMBASE databases for studies reporting adjusted estimates on the TB-DM association published before December 22, 2015, with no restrictions on region and language. In the meta-analysis, adjusted estimates were pooled using a DerSimonian-Laird random-effects model, according to study design. Risk of bias assessment and sensitivity analyses were conducted. 44 eligible studies were included, which consisted of 58,468,404 subjects from 16 countries. Compared with non-DM patients, DM patients had 3.59-fold (95% confidence interval (CI) 2.25-5.73), 1.55-fold (95% CI 1.39-1.72), and 2.09-fold (95% CI 1.71-2.55) increased risk of active TB in four prospective, 16 retrospective, and 17 case-control studies, respectively. Country income level (3.16-fold in low/middle-vs. 1.73-fold in high-income countries), background TB incidence (2.05-fold in countries with >50 vs. 1.89-fold in countries with ≤50 TB cases per 100,000 person-year), and geographical region (2.44-fold in Asia vs. 1.71-fold in Europe and 1.73-fold in USA/Canada) affected appreciably the estimated association, but potential risk of bias, type of population (general versus clinical), and potential for duplicate data, did not. Microbiological ascertainment for TB (3.03-fold) and/or blood testing for DM (3.10-fold), as well as uncontrolled DM (3.30-fold), resulted in stronger estimated association. DM is associated with a two- to four-fold increased risk of active TB. The association was stronger when ascertainment was based on biological testing rather than medical records or self-report. The burgeoning DM epidemic could impact upon the achievements of the WHO "End TB Strategy" for reducing TB incidence

    Near-infrared sensitivity enhancement of photorefractive polymer composites by pre-illumination

    Get PDF
    Among the various applications for reversible holographic storage media, a particularly interesting one is time-gated holographic imaging (TGHI). This technique could provide a noninvasive medical diagnosis tool, related to optical coherence tomography. In this technique, biological samples are illuminated within their transparency windowwith near-infrared light, and information about subsurface features is obtained by a detection method that distinguishes between reflected photons originating from a certain depth and those scattered from various depths. Such an application requires reversible holographic storage media with very high sensitivity in the near-infrared. Photorefractive materials, in particular certain amorphous organic systems, are in principle promising candidate media, but their sensitivity has so far been too low, mainly owing to their long response times in the near-infrared. Here we introduce an organic photorefractive material—a composite based on the poly(arylene vinylene) copolymer TPD-PPV—that exhibits favourable near-infrared characteristics. We show that pre-illumination of this material at a shorter wavelength before holographic recording improves the response time by a factor of 40. This process was found to be reversible. We demonstrate multiple holographic recording with this technique at video rate under practical conditions

    Platelet-activating factor levels of serum and gingival crevicular fluid in nonsmoking patients with periodontitis and/or coronary heart disease

    Get PDF
    The purpose of the present study was to investigate systemic and local levels of platelet-activating factor (PAF), a potent proinflammatory mediator implicated in cardiovascular pathophysiology in adult nonsmoking patients with periodontitis with or without coronary heart disease (CHD). Eighty-seven volunteers, 25 periodontitis patients, 19 periodontitis with CHD patients, 19 CHD patients, and 24 healthy controls were included, and periodontal conditions were assessed. Gingival crevicular fluid (GCF) and venous blood were collected, and PAF levels were measured by enzyme-linked immunosorbent assay. PAF levels in serum (303.3 ± 204 pg/ml) and in GCF (26.3 ± 6 pg/μl) of the periodontitis group with CHD, the periodontitis group (serum, 302.4 ± 241 pg/ml and GCF, 26.3 ± 8 pg/μl) and the CHD group (serum, 284.7 ± 192 pg/ml and GCF, 20.8 ± 6 pg/μl) were significantly higher than the healthy control group (serum, 65.4 ± 35 pg/ml and GCF, 7.7 ± 3 pg/μl; p < 0.05). In summary, the present study could demonstrate that in patients with periodontitis, the inflammatory mediator PAF is released into serum at least in the same range as for patients with coronary heart disease. However, no additive effects were seen when both conditions were present
    corecore