455 research outputs found

    Effect of different walking break strategies on superficial femoral artery endothelial function.

    Get PDF
    Breaking up prolonged sitting with physical activity (PA) breaks prevents conduit artery dysfunction. However, the optimal break strategy to achieve this, in terms of the frequency or duration of PA, is not known. This study assessed the effect of breaking up sitting with different PA break strategies on lower limb peripheral artery endothelial function. Fifteen participants (10 male, 35.8 ± 10.2 years, BMI: 25.5 ± 3.2 kg m-2 ) completed, on separate days, three 4-h conditions in a randomized order: (1) uninterrupted sitting (SIT), (2) sitting with 2-min light-intensity walking breaks every 30 min (2WALK), or (3) sitting with 8-min light-intensity walking breaks every 2 h (8WALK). At baseline and 4 h, superficial femoral artery function (flow-mediated dilation; FMD), blood flow, and shear rate (SR) were assessed using Doppler ultrasound. For each condition, the change in outcome variables was calculated and data were statistically analyzed using a linear mixed model. There was no significant main effect for the change in FMD (P = 0.564). A significant main effect was observed for the change in blood flow (P = 0.022), with post hoc analysis revealing a greater reduction during SIT (-42.7 ± 14.2 mL·min) compared to 8WALK (0.45 ± 17.7 mL·min; P = 0.012). There were no significant main effects for mean, antegrade, or retrograde SR (P > 0.05). Superficial femoral artery blood flow, but not FMD, was reduced following uninterrupted sitting. This decline in blood flow was prevented with longer duration, less frequent walking breaks rather than shorter, more frequent breaks suggesting the dose (duration and frequency) of PA may influence the prevention of sitting-induced decreases in blood flow

    Cerebral and peripheral vascular differences between pre- and post-menopausal women

    Get PDF
    Objective: Menopause is associated with lower peripheral vascular function however cerebrovascular responses to this time-period are unclear. We aimed to describe peripheral vascular and cerebrovascular differences between pre- and post-menopausal women. Methods: Fifty pre- and post-menopausal women (N=100) underwent assessments of cerebral blood flow, cerebrovascular reactivity and autoregulation, carotid artery reactivity, brachial and femoral artery flow-mediated dilation and carotid, brachial and femoral artery intima-media thickness. Comparisons were made between pre- and post-menopausal women followed by a secondary-analysis (N=20) between late-pre-menopausal women and those within five years of menopause using a general linear model. Results: Cerebral blood flow (-11 [-17, -4 cm/s]; p=0.03) and carotid reactivity (-2.3 [-4.3, - 0.3%] p=0.03) were lower post-menopause compared to pre-menopause while cerebrovascular reactivity and autoregulation did not differ (p>0.05). Post-menopausal women had a larger carotid (0.16 [0.13, 0.20 mm] p<0.001), brachial (0.07 [0.03, 0.11mm] p=0.004) and femoral artery intima-media-thickness (0.09 [0.05, 0.14 mm] p=0.04), alongside lower brachial (-2.3 [-3.9, -0.7%] p=0.004) and femoral artery flow-mediated dilation (-3.0 [-4.3, - 1.8 %] p<0.001). In the secondary-analysis, early-post-menopausal women had a lower femoral artery flow-mediated dilation (-1.9 [-3.9, -0.0 %] p=0.05) and larger carotid intimamedia-thickness (0.07 [0.00, 0.14 mm] p=0.03) compared to late-pre-menopausal women. Conclusions: Cerebral blood flow, carotid artery reactivity, peripheral vascular function and structure are negatively affected by age. Preliminary data indicates that femoral artery function and carotid artery structure may be potentially impaired in early-post-menopause compared with late-pre-menopause. These findings suggest that conduit arteries susceptible to atherosclerosis may be important targets for lifestyle intervention in early menopause

    The fetal mouse is a sensitive genotoxicity model that exposes lentiviral-associated mutagenesis resulting in liver oncogenesis

    Get PDF
    This article is available open access through the publisher’s website at the link below. Copyright @ 2013 The American Society of Gene & Cell Therapy.Genotoxicity models are extremely important to assess retroviral vector biosafety before gene therapy. We have developed an in utero model that demonstrates that hepatocellular carcinoma (HCC) development is restricted to mice receiving nonprimate (np) lentiviral vectors (LV) and does not occur when a primate (p) LV is used regardless of woodchuck post-translation regulatory element (WPRE) mutations to prevent truncated X gene expression. Analysis of 839 npLV and 244 pLV integrations in the liver genomes of vector-treated mice revealed clear differences between vector insertions in gene dense regions and highly expressed genes, suggestive of vector preference for insertion or clonal outgrowth. In npLV-associated clonal tumors, 56% of insertions occurred in oncogenes or genes associated with oncogenesis or tumor suppression and surprisingly, most genes examined (11/12) had reduced expression as compared with control livers and tumors. Two examples of vector-inserted genes were the Park 7 oncogene and Uvrag tumor suppressor gene. Both these genes and their known interactive partners had differential expression profiles. Interactive partners were assigned to networks specific to liver disease and HCC via ingenuity pathway analysis. The fetal mouse model not only exposes the genotoxic potential of vectors intended for gene therapy but can also reveal genes associated with liver oncogenesis.Imperial College London, the Wellcome Trust, and Brunel University

    Does self-monitoring reduce blood pressure? Meta-analysis with meta-regression of randomized controlled trials

    Get PDF
    Introduction. Self-monitoring of blood pressure (BP) is an increasingly common part of hypertension management. The objectives of this systematic review were to evaluate the systolic and diastolic BP reduction, and achievement of target BP, associated with self-monitoring. Methods. MEDLINE, Embase, Cochrane database of systematic reviews, database of abstracts of clinical effectiveness, the health technology assessment database, the NHS economic evaluation database, and the TRIP database were searched for studies where the intervention included self-monitoring of BP and the outcome was change in office/ambulatory BP or proportion with controlled BP. Two reviewers independently extracted data. Meta-analysis using a random effects model was combined with meta-regression to investigate heterogeneity in effect sizes. Results. A total of 25 eligible randomized controlled trials (RCTs) (27 comparisons) were identified. Office systolic BP (20 RCTs, 21 comparisons, 5,898 patients) and diastolic BP (23 RCTs, 25 comparisons, 6,038 patients) were significantly reduced in those who self-monitored compared to usual care (weighted mean difference (WMD) systolic −3.82 mmHg (95% confidence interval −5.61 to −2.03), diastolic −1.45 mmHg (−1.95 to −0.94)). Self-monitoring increased the chance of meeting office BP targets (12 RCTs, 13 comparisons, 2,260 patients, relative risk = 1.09 (1.02 to 1.16)). There was significant heterogeneity between studies for all three comparisons, which could be partially accounted for by the use of additional co-interventions. Conclusion. Self-monitoring reduces blood pressure by a small but significant amount. Meta-regression could only account for part of the observed heterogeneity

    Impact of green tea on the deleterious cardiometabolic effects of 7-days unhealthy lifestyle in young healthy males.

    Get PDF
    PURPOSE: The aim of this study was to examine if catechin-rich green tea abrogates the negative effects of 7-days of physical inactivity and excessive calorie-intake on insulin homeostasis and peripheral vascular function. METHODS: Using a randomized, double-blind, crossover design, twelve healthy men (29 ± 6 yrs) underwent 7-days unhealthy lifestyle (UL), including physical inactivity (-50% steps/day) and overfeeding (+50% kcal/day). This was combined with green tea consumption (UL-tea; 3 doses/day) or placebo (UL-placebo). Before and after each intervention, we examined postprandial blood glucose and insulin (3-h after a 1,202 kcal meal) and upper and lower limb vascular function (flow-mediated dilation (FMD%)) and carotid artery reactivity (CAR%). RESULTS: UL-placebo increased postprandial glucose and insulin, while UL-tea decreased postprandial glucose and insulin (Time*Intervention interaction effects: both p  0.05) for brachial FMD%. CONCLUSION: Seven days of physical inactivity and overfeeding impair insulin homeostasis and vascular function. These effects were mitigated by a daily intake of catechin-rich green tea

    Expert consensus and evidence-based recommendations for the assessment of flow-mediated dilation in humans.

    Get PDF
    Endothelial dysfunction is involved in the development of atherosclerosis, which precedes asymptomatic structural vascular alterations as well as clinical manifestations of cardiovascular disease (CVD). Endothelial function can be assessed non-invasively using the flow-mediated dilation (FMD) technique. Flow-mediated dilation represents an endothelium-dependent, largely nitric oxide (NO)-mediated dilatation of conduit arteries in response to an imposed increase in blood flow and shear stress. Flow-mediated dilation is affected by cardiovascular (CV) risk factors, relates to coronary artery endothelial function, and independently predicts CVD outcome. Accordingly, FMD is a tool for examining the pathophysiology of CVD and possibly identifying subjects at increased risk for future CV events. Moreover, it has merit in examining the acute and long-term impact of physiological and pharmacological interventions in humans. Despite concerns about its reproducibility, the available evidence shows that highly reliable FMD measurements can be achieved when specialized laboratories follow standardized protocols. For this purpose, updated expert consensus guidelines for the performance of FMD are presented, which are based on critical appraisal of novel technical approaches, development of analysis software, and studies exploring the physiological principles underlying the technique. Uniformity in FMD performance will (i) improve comparability between studies, (ii) contribute to construction of reference values, and (iii) offer an easy accessible and early marker of atherosclerosis that could complement clinical symptoms of structural arterial disease and facilitate early diagnosis and prediction of CVD outcomes

    Changes in Parasite Virulence Induced by the Disruption of a Single Member of the 235 kDa Rhoptry Protein Multigene Family of Plasmodium yoelii

    Get PDF
    Invasion of the erythrocyte by the merozoites of the malaria parasite is a complex process involving a range of receptor-ligand interactions. Two protein families termed Erythrocyte Binding Like (EBL) proteins and Reticulocyte Binding Protein Homologues (RH) play an important role in host cell recognition by the merozoite. In the rodent malaria parasite, Plasmodium yoelii, the 235 kDa rhoptry proteins (Py235) are coded for by a multigene family and are members of the RH. In P. yoelii Py235 as well as a single member of EBL have been shown to be key mediators of virulence enabling the parasite to invade a wider range of host erythrocytes. One member of Py235, PY01365 is most abundantly transcribed in parasite populations and the protein specifically binds to erythrocytes and is recognized by the protective monoclonal antibody 25.77, suggesting a key role of this particular member in virulence. Recent studies have indicated that overall levels of Py235 expression are essential for parasite virulence. Here we show that disruption of PY01365 in the virulent YM line directly impacts parasite virulence. Furthermore the disruption of PY01365 leads to a reduction in the number of schizonts that express members of Py235 that react specifically with the mcAb 25.77. Erythrocyte binding assays show reduced binding of Py235 to red blood cells in the PY01365 knockout parasite as compared to YM. While our results identify PY01365 as a mediator of parasite virulence, they also confirm that other members of Py235 are able to substitute for PY01365

    G-Quadruplex Visualization in Cells via Antibody and Fluorescence Probe

    Get PDF
    G-quadruplexes (G4s) are noncanonical nucleic acids structures involved in key regulatory and pathological roles in eukaryotes, prokaryotes, and viruses: the development of specific antibodies and fluorescent probes represent an invaluable tool to understand their biological relevance. We here present three protocols for the visualization of G4s in cells, both uninfected and HSV-1 infected, using a specific antibody and a fluorescent G4 ligand, and the effect of the fluorescent ligand on a G4 binding protein, nucleolin, upon binding of the molecule to the nucleic acids structure
    corecore