1,031 research outputs found
The growth hormone receptor gene deleted for exon three (GHRd3) polymorphism is associated with birth and placental weight.
Human growth hormone receptor (GHR) transcripts have two isoforms, full-length (GHRfl) or exon 3 deleted (GHRd3). An association of these isoforms has been found with small for gestational age (SGA) infants but does not influence adult height. The role of this polymorphism in the birth size spectrum in the general population is unclear
Increasing condom use in heterosexual men: development of a theory-based interactive digital intervention
Increasing condom use to prevent sexually transmitted infections is a key public health goal. Interventions are more likely to be effective if they are theory- and evidence-based. The Behaviour Change Wheel (BCW) provides a framework for intervention development. To provide an example of how the BCW was used to develop an intervention to increase condom use in heterosexual men (the MenSS website), the steps of the BCW intervention development process were followed, incorporating evidence from the research literature and views of experts and the target population. Capability (e.g. knowledge) and motivation (e.g. beliefs about pleasure) were identified as important targets of the intervention. We devised ways to address each intervention target, including selecting interactive features and behaviour change techniques. The BCW provides a useful framework for integrating sources of evidence to inform intervention content and deciding which influences on behaviour to target
Calmodulin-like proteins localized to the conoid regulate motility and cell invasion by Toxoplasma gondii
Toxoplasma gondii contains an expanded number of calmodulin (CaM)-like proteins whose functions are poorly understood. Using a combination of CRISPR/Cas9-mediated gene editing and a plant-like auxin-induced degron (AID) system, we examined the roles of three apically localized CaMs. CaM1 and CaM2 were individually dispensable, but loss of both resulted in a synthetic lethal phenotype. CaM3 was refractory to deletion, suggesting it is essential. Consistent with this prediction auxin-induced degradation of CaM3 blocked growth. Phenotypic analysis revealed that all three CaMs contribute to parasite motility, invasion, and egress from host cells, and that they act downstream of microneme and rhoptry secretion. Super-resolution microscopy localized all three CaMs to the conoid where they overlap with myosin H (MyoH), a motor protein that is required for invasion. Biotinylation using BirA fusions with the CaMs labeled a number of apical proteins including MyoH and its light chain MLC7, suggesting they may interact. Consistent with this hypothesis, disruption of MyoH led to degradation of CaM3, or redistribution of CaM1 and CaM2. Collectively, our findings suggest these CaMs may interact with MyoH to control motility and cell invasion
Short Telomeres Initiate Telomere Recombination in Primary and Tumor Cells
Human tumors that lack telomerase maintain telomeres by alternative lengthening mechanisms. Tumors can also form in telomerase-deficient mice; however, the genetic mechanism responsible for tumor growth without telomerase is unknown. In yeast, several different recombination pathways maintain telomeres in the absence of telomerase—some result in telomere maintenance with minimal effects on telomere length. To examine non-telomerase mechanisms for telomere maintenance in mammalian cells, we used primary cells and lymphomas from telomerase-deficient mice (mTR−/− and Eμmyc+mTR−/−) and CAST/EiJ mouse embryonic fibroblast cells. These cells were analyzed using pq-ratio analysis, telomere length distribution outliers, CO-FISH, Q-FISH, and multicolor FISH to detect subtelomeric recombination. Telomere length was maintained during long-term growth in vivo and in vitro. Long telomeres, characteristic of human ALT cells, were not observed in either late passage or mTR−/− tumor cells; instead, we observed only minimal changes in telomere length. Telomere length variation and subtelomeric recombination were frequent in cells with short telomeres, indicating that length maintenance is due to telomeric recombination. We also detected telomere length changes in primary mTR−/− cells that had short telomeres. Using mouse mTR+/− and human hTERT+/− primary cells with short telomeres, we found frequent length changes indicative of recombination. We conclude that telomere maintenance by non-telomerase mechanisms, including recombination, occurs in primary cells and is initiated by short telomeres, even in the presence of telomerase. Most intriguing, our data indicate that some non-telomerase telomere maintenance mechanisms occur without a significant increase in telomere length
The interaction between a sexually transferred steroid hormone and a female protein regulates oogenesis in the malaria mosquito anopheles gambiae
Molecular interactions between male and female factors during mating profoundly affect the reproductive behavior and physiology of female insects. In natural populations of the malaria mosquito Anopheles gambiae, blood-fed females direct nutritional resources towards oogenesis only when inseminated. Here we show that the mating-dependent pathway of egg development in these mosquitoes is regulated by the interaction between the steroid hormone 20-hydroxy-ecdysone (20E) transferred by males during copulation and a female Mating-Induced Stimulator of Oogenesis (MISO) protein. RNAi silencing of MISO abolishes the increase in oogenesis caused by mating in blood-fed females, causes a delay in oocyte development, and impairs the function of male-transferred 20E. Co-immunoprecipitation experiments show that MISO and 20E interact in the female reproductive tract. Moreover MISO expression after mating is induced by 20E via the Ecdysone Receptor, demonstrating a close cooperation between the two factors. Male-transferred 20E therefore acts as a mating signal that females translate into an increased investment in egg development via a MISO-dependent pathway. The identification of this male–female reproductive interaction offers novel opportunities for the control of mosquito populations that transmit malaria
Direct and indirect measurement of somatic cell count as indicator of intramammary infection in dairy goats
<p>Abstract</p> <p>Background</p> <p>Mastitis is the most important and costly disease in dairy goat production. Subclinical mastitis is common in goats and is mainly caused by contagious bacteria. Several methods to diagnose subclinical mastitis are available. In this study indirect measurement of somatic cell count (SCC) by California Mastitis Test (CMT) and direct measurement of SCC using a portable deLaval cell counter (DCC) are evaluated. Swedish goat farmers would primarily benefit from diagnostic methods that can be used at the farm. The purpose of the study was to evaluate SCC measured by CMT and DCC as possible markers for intramammary infection (IMI) in goats without clinical symptoms of mastitis. Moreover to see how well indirect measurement of SCC (CMT) corresponded to direct measurement of SCC (DCC).</p> <p>Method</p> <p>Udder half milk samples were collected once from dairy goats (n = 111), in five different farms in Northern and Central Sweden. Only clinically healthy animals were included in the study. All goats were in mid to late lactation at sampling. Milk samples were analyzed for SCC by CMT and DCC at the farm, and for bacterial growth at the laboratory.</p> <p>Results</p> <p>Intramammary infection, defined as growth of udder pathogens, was found in 39 (18%) of the milk samples. No growth was found in 180 (81%) samples while 3 (1%) samples were contaminated. The most frequently isolated bacterial species was coagulase negative staphylococci (CNS) (72% of all isolates), followed by <it>Staphylococcus aureus </it>(23% of all isolates). Somatic cell count measured by DCC was strongly (p = 0.000) associated with bacterial growth. There was also a very strong association between CMT and bacterial growth. CMT 1 was associated with freedom of IMI while CMT ≥2 was associated with IMI. Indirect measurement of SCC by CMT was well correlated with SCC measured by DCC.</p> <p>Conclusions</p> <p>According to the results, SCC measured with CMT or DCC can predict udder infection in goats, and CMT can be used as a predictor of the SCC.</p
Tumor collagenase stimulatory factor (TCSF) expression and localization in human lung and breast cancers.
Tumor cell-derived collagenase stimulatory factor (TCSF) stimulates in vitro the biosynthesis of various matrix metalloproteinases involved in tumor invasion, such as interstitial collagenase, gelatinase A, and stromelysin 1. The expression of TCSF mRNAs was studied in vivo, using in situ hybridization and Northern blotting analysis, in seven normal tissues and in 22 squamous cell carcinomas of the lung, and in seven benign proliferations and in 22 ductal carcinomas of the mammary gland. By in situ hybridization, TCSF mRNAs were detected in 40 of 44 carcinomas, in pre-invasive and invasive cancer cells of both lung and breast cancers. TCSF mRNAs and gelatinase A mRNAs were both visualized in the same areas in serial sections in breast cancers, and were expressed by different cells, tumor cells, and fibroblasts. The histological results were confirmed by Northern blot analysis, which showed a higher expression of TCSF mRNAs in cancers than in benign and normal tissues. These observations support the hypothesis that TCSF is an important factor in lung and breast tumor progression
Relation of exaggerated cytokine responses of CF airway epithelial cells to PAO1 adherence
In many model systems, cystic fibrosis (CF) phenotype airway epithelial cells in culture respond to P. aeruginosa with greater interleukin (IL)-8 and IL-6 secretion than matched controls. In order to test whether this excess inflammatory response results from the reported increased adherence of P. aeruginosa to the CF cells, we compared the inflammatory response of matched pairs of CF and non CF airway epithelial cell lines to the binding of GFP-PAO1, a strain of pseudomonas labeled with green fluorescent protein. There was no clear relation between GFP-PAO1 binding and cytokine production in response to PAO1. Treatment with exogenous aGM1 resulted in greater GFP-PAO1 binding to the normal phenotype compared to CF phenotype cells, but cytokine production remained greater from the CF cell lines. When cells were treated with neuraminidase, PAO1 adherence was equalized between CF and nonCF phenotype cell lines, but IL-8 production in response to inflammatory stimuli was still greater in CF phenotype cells. The polarized cell lines 16HBEo-Sense (normal phenotype) and Antisense (CF phenotype) cells were used to test the effect of disrupting tight junctions, which allows access of PAO1 to basolateral binding sites in both cell lines. IL-8 production increased from CF, but not normal, cells. These data indicate that increased bacterial binding to CF phenotype cells cannot by itself account for excess cytokine production in CF airway epithelial cells, encourage investigation of alternative hypotheses, and signal caution for therapeutic strategies proposed for CF that include disruption of tight junctions in the face of pseudomonas infection
Requirement of argininosuccinate lyase for systemic nitric oxide production
Nitric oxide (NO) is crucial in diverse physiological and pathological processes. We show that a hypomorphic mouse model of argininosuccinate lyase (encoded by Asl) deficiency has a distinct phenotype of multiorgan dysfunction and NO deficiency. Loss of Asl in both humans and mice leads to reduced NO synthesis, owing to both decreased endogenous arginine synthesis and an impaired ability to use extracellular arginine for NO production. Administration of nitrite, which can be converted into NO in vivo, rescued the manifestations of NO deficiency in hypomorphic Asl mice, and a nitric oxide synthase (NOS)-independent NO donor restored NO-dependent vascular reactivity in humans with ASL deficiency. Mechanistic studies showed that ASL has a structural function in addition to its catalytic activity, by which it contributes to the formation of a multiprotein complex required for NO production. Our data demonstrate a previously unappreciated role for ASL in NOS function and NO homeostasis. Hence, ASL may serve as a target for manipulating NO production in experimental models, as well as for the treatment of NO-related diseases
Motivational component profiles in university students learning histology: a comparative study between genders and different health science curricula
Background: The students' motivation to learn basic sciences in health science curricula is poorly understood. The purpose of this study was to investigate the influence of different components of motivation (intrinsic motivation, self-determination, self-efficacy and extrinsic -career and grade-motivation) on learning human histology in health science curricula and their relationship with the final performance of the students in histology.
Methods: Glynn Science Motivation Questionnaire II was used to compare students' motivation components to learn histology in 367 first-year male and female undergraduate students enrolled in medical, dentistry and pharmacy degree programs.
Results: For intrinsic motivation, career motivation and self-efficacy, the highest values corresponded to medical students, whereas dentistry students showed the highest values for self-determination and grade motivation. Genders differences were found for career motivation in medicine, self-efficacy in dentistry, and intrinsic motivation, self-determination and grade motivation in pharmacy. Career motivation and self-efficacy components correlated with final performance in histology of the students corresponding to the three curricula.
Conclusions: Our results show that the overall motivational profile for learning histology differs among medical, dentistry and pharmacy students. This finding is potentially useful to foster their learning process, because if they are metacognitively aware of their motivation they will be better equipped to self-regulate their science-learning behavior in histology. This information could be useful for instructors and education policy makers to enhance curricula not only on the cognitive component of learning but also to integrate students' levels and types of motivation into the processes of planning, delivery and evaluation of medical education.This research was supported by the Unidad de Innovación Docente,
University of Granada, Spain through grants UGR11-294 and UGR11-303
- …