15 research outputs found

    Fermi Large Area Telescope observations of PSR J1836+5925

    Full text link
    The discovery of the gamma-ray pulsar PSR J1836+5925, powering the formerly unidentified EGRET source 3EG J1835+5918, was one of the early accomplishments of the Fermi Large Area Telescope (LAT). Sitting 25 degrees off the Galactic plane, PSR J1836+5925 is a 173 ms pulsar with a characteristic age of 1.8 million years, a spindown luminosity of 1.1×1034\times10^{34} erg s1^{-1}, and a large off-peak emission component, making it quite unusual among the known gamma-ray pulsar population. We present an analysis of one year of LAT data, including an updated timing solution, detailed spectral results and a long-term light curve showing no indication of variability. No evidence for a surrounding pulsar wind nebula is seen and the spectral characteristics of the off-peak emission indicate it is likely magnetospheric. Analysis of recent XMM observations of the X-ray counterpart yields a detailed characterization of its spectrum, which, like Geminga, is consistent with that of a neutron star showing evidence for both magnetospheric and thermal emission.Comment: Accepted to Astrophysical Journa

    BRIEF REPORT: Screening Items to Identify Patients with Limited Health Literacy Skills

    No full text
    BACKGROUND: Patients with limited literacy skills are routinely encountered in clinical practice, but they are not always identified by clinicians. OBJECTIVE: To evaluate 3 candidate questions to determine their accuracy in identifying patients with limited or marginal health literacy skills. METHODS: We studied 305 English-speaking adults attending a university-based primary care clinic. Demographic items, health literacy screening questions, and the Rapid Estimate of Adult Literacy in Medicine (REALM) were administered to patients. To determine the accuracy of the candidate questions for identifying limited or marginal health literacy skills, we plotted area under the receiver operating characteristic (AUROC) curves for each item, using REALM scores as a reference standard. RESULTS: The mean age of subjects was 49.5; 67.5% were female, 85.2% Caucasian, and 81.3% insured by TennCare and/or Medicare. Fifty-four (17.7%) had limited and 52 (17.0%) had marginal health literacy skills. One screening question, “How confident are you filling out medical forms by yourself?” was accurate in detecting limited (AUROC of 0.82; 95% confidence interval [CI]=0.77 to 0.86) and limited/marginal (AUROC of 0.79; 95% CI=0.74 to 0.83) health literacy skills. This question had significantly greater AUROC than either of the other questions (P<.01) and also a greater AUROC than questions based on demographic characteristics. CONCLUSIONS: One screening question may be sufficient for detecting limited and marginal health literacy skills in clinic populations

    Prenatal DHA Supplementation and Infant Attention

    Get PDF
    Background—Results of randomized trials on the effects of prenatal docosahexaenoic acid (DHA) on infant cognition are mixed, but most trials have used global standardized outcomes, which may not be sensitive to effects of DHA on specific cognitive domains. Methods—Women were randomized to 600 mg/d DHA or a placebo for the last two trimesters of pregnancy. Infants of these mothers were then followed on tests of visual habituation at 4, 6, and 9 months of age. Results—DHA supplementation did not affect look duration or habituation parameters but infants of supplemented mothers maintained high levels of sustained attention (SA) across the first year; SA declined for the placebo group. The supplemented group also showed significantly reduced attrition on habituation tasks, especially at 6 and 9 months. Conclusion—The findings support with the suggestion that prenatal DHA may positively affect infants’ attention and regulation of state

    FERMI LARGE AREA TELESCOPE OBSERVATIONS OF PSR J1836+5925

    No full text
    The discovery of the gamma-ray pulsar PSR J1836+5925, powering the formerly unidentified EGRET source 3EG J1835+5918, was one of the early accomplishments of the Fermi Large Area Telescope (LAT). Sitting 25 degrees off the Galactic plane, PSR J1836+5925 is a 173 ms pulsar with a characteristic age of 1.8 million years, a spindown luminosity of 1.1 x 10(34) erg s(-1), and a large off-peak (OP) emission component, making it quite unusual among the known gamma-ray pulsar population. We present an analysis of one year of LAT data, including an updated timing solution, detailed spectral results, and a long-term light curve showing no indication of variability. No evidence for a surrounding pulsar wind nebula is seen and the spectral characteristics of the OP emission indicate it is likely magnetospheric. Analysis of recent XMM-Newton observations of the X-ray counterpart yields a detailed characterization of its spectrum, which, like Geminga, is consistent with that of a neutron star showing evidence for both magnetospheric and thermal emission

    THE FIRST FERMI LARGE AREA TELESCOPE CATALOG OF GAMMA-RAY PULSARS

    No full text
    The dramatic increase in the number of known gamma-ray pulsars since the launch of the Fermi Gamma-ray Space Telescope (formerly GLAST) offers the first opportunity to study a sizable population of these high-energy objects. This catalog summarizes 46 high-confidence pulsed detections using the first six months of data taken by the Large Area Telescope (LAT), Fermi's main instrument. Sixteen previously unknown pulsars were discovered by searching for pulsed signals at the positions of bright gamma-ray sources seen with the LAT, or at the positions of objects suspected to be neutron stars based on observations at other wavelengths. The dimmest observed flux among these gamma-ray-selected pulsars is 6.0 x 10(-8) ph cm(-2) s(-1) (for E &gt; 100 MeV). Pulsed gamma-ray emission was discovered from 24 known pulsars by using ephemerides (timing solutions) derived from monitoring radio pulsars. Eight of these new gamma-ray pulsars are millisecond pulsars. The dimmest observed flux among the radio-selected pulsars is 1.4 x 10(-8) ph cm(-2) s(-1) (for E &gt; 100 MeV). The remaining six gamma-ray pulsars were known since the Compton Gamma Ray Observatory mission, or before. The limiting flux for pulse detection is non-uniform over the sky owing to different background levels, especially near the Galactic plane. The pulsed energy spectra can be described by a power law with an exponential cutoff, with cutoff energies in the range similar to 1-5 GeV. The rotational energy-loss rate ((E) over dot) of these neutron stars spans five decades, from similar to 3 x 10(33) erg s(-1) to 5 x 10(38) erg s(-1), and the apparent efficiencies for conversion to gammaray emission range from similar to 0.1% to similar to unity, although distance uncertainties complicate efficiency estimates. The pulse shapes show substantial diversity, but roughly 75% of the gamma-ray pulse profiles have two peaks, separated by greater than or similar to 0.2 of rotational phase. For most of the pulsars, gamma-ray emission appears to come mainly from the outer magnetosphere, while polar-cap emission remains plausible for a remaining few. Spatial associations imply that many of these pulsars power pulsar wind nebulae. Finally, these discoveries suggest that gamma-ray-selected young pulsars are born at a rate comparable to that of their radio-selected cousins and that the birthrate of all young gamma-ray-detected pulsars is a substantial fraction of the expected Galactic supernova rate
    corecore