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Abstract

Background—Results of randomized trials on the effects of prenatal docosahexaenoic acid 

(DHA) on infant cognition are mixed, but most trials have used global standardized outcomes, 

which may not be sensitive to effects of DHA on specific cognitive domains.

Methods—Women were randomized to 600 mg/d DHA or a placebo for the last two trimesters of 

pregnancy. Infants of these mothers were then followed on tests of visual habituation at 4, 6, and 9 

months of age.

Results—DHA supplementation did not affect look duration or habituation parameters but 

infants of supplemented mothers maintained high levels of sustained attention (SA) across the first 

year; SA declined for the placebo group. The supplemented group also showed significantly 

reduced attrition on habituation tasks, especially at 6 and 9 months.

Conclusion—The findings support with the suggestion that prenatal DHA may positively affect 

infants’ attention and regulation of state.

Introduction

Long-chain polyunsaturated fatty acids (LCPUFAs) and, in particular, docosahexaenoic acid 

(DHA) are associated with a number of positive effects on maternal and infant health (1). 

Interest in prenatal exposure to DHA has been fueled by findings showing improved 

pregnancy outcomes (e.g., gestation duration, birthweight) in both observational studies and 

randomized clinical trials (2–6). However, it has been hypothesized that prenatal exposure to 
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DHA may also affect later development through fetal programming of the central nervous 

system and various other physiologic pathways. This possibility is supported by a number of 

observational studies that associate DHA status during pregnancy with positive long-term 

effects on the offspring (7–13). Several randomized trials of maternal DHA supplementation 

during pregnancy and/or lactation have been conducted with mixed results; the larger trials 

have not reported advantages for DHA supplementation during the first 18 months (14–16), 

although one small study found positive effects on problem solving (17). Of studies that 

followed infants into the preschool period, two reported significant benefits on IQ and 

neurodevelopmental measures (18, 19) while another did not (20). Positive effects of 

prenatal or postnatal DHA supplementation or status on attention in infancy and early 

childhood has been documented in several (9, 21–23), but not all (24) studies. Many of the 

studies showing null effects of prenatal supplementation have used global standardized tests 

for evaluating developmental outcome; these tests may not be sensitive to the effects of such 

supplementation in specific cognitive domains (25).

We report here on the results of a Phase III, double-blind, placebo-controlled randomized 

clinical trial (RCT, registered at www.clinicaltrials.gov as NCT00266825) of infants born to 

a large sample of mothers prenatally supplemented with DHA. The results of the other 

primary aims of the study (i.e., compliance, safety evaluation, and pregnancy outcomes) are 

documented elsewhere; supplementation had many positive effects, including the reduction 

of high-risk prematurity and increased birth length and weight (2). This study addresses the 

hypothesis that maternal DHA supplementation can enhance development, in particular 

visual attention, as assessed in infancy.

Results

Behavioral Measures

Peak look duration yielded a significant main effect for Age, F(2, 167.218 = 11.624 , p < 

0.001) as look duration during habituation declined from 4 to 9 mos, but significant main 

effects or interactions involving DHA Group emerged. The analysis of looks to habituation 

yielded a marginally significant effect of DHA Group, F(2,165.373) = 3.69, p = .056, with 

infants from supplemented mothers (M = 6.8 looks, SD = 2.83) showing slightly fewer looks 

to habituation (i.e., slightly faster attainment of habituation) than infants from mothers on 

placebo (M = 7.31 looks, SD = 3.35).

Heart Rate

Heart rate (HR, expressed in beats/min) data were analyzed with mixed model methods on 

the prestimulus period (the 2-sec interval prior to stimulus onset), latency (the interval after 

stimulus onset but prior to the onset of looking), looking, and poststimulus (the 2-sec period 

after the stimulus has been withdrawn). Data for these phases for Placebo and Supplemented 

groups at all three ages, with Looking broken into HR-Defined phases of orienting (OR), 

sustained attention (SA), and attention termination (AT) are shown (see Figure 1; definitions 

and explanations of these three phases of attention are provided in the Method section under 

Measures Analyzed).
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In each of the analyses for infant HR during Pre-stimulus, Latency, Looking, and Post-

stimulus periods, data revealed expected significant main effects for Age (all ps < 0.001), 

which is due to the widely- and previously-reported decline in HR with infant age. No main 

effects or interaction involving DHA Group emerged at any point for HR analyses across 

looking during habituation.

HR Defined Phases of Attention

The proportion of time spent in OR increased significantly with age, F(2,176.512) = 4.58, p 
= 0.011), and the proportion of time spent in AT decreased with age, F(2, 180.826 = 3.88, p 
= 0.022). The main variable of interest, however, was proportion of time spent in SA, which 

reflects the relative amount of infants’ looking spent engaged with and actively processing 

the habituation stimulus. This analysis yielded a significant effect of Age, F(2, 179.027 = 

3.31, p = 0.039) as SA decreased overall from 4 to 9 months, but this effect was moderated 

by a significant DHA Group X Age interaction, F(2, 179.027 = 3.51, p = 0.032). SA 

decreased significantly with age in the Placebo group, F(2, 75.172 = 3.91, p = .024) but not 

in the Supplemented group, F(2, 99.545 = 2.40, p = ns). Modeled data for SA from 4 to 9 

months are shown (see Figure 2).

After observing this improvement in the quality of attention in infants from supplemented 

mothers on the habituation task, we examined whether the effect persisted after adding 

various covariates into the analyses. We repeated this analysis, controlling for parental 

verbal ability (as measured on the Peabody Picture Vocabulary Test: PPVT), household 

income, maternal education, and additional DHA taken during pregnancy, and gestational 

age at enrollment. The DHA Group X Age interaction remained significant in each case.

Task Completion and Fussiness—An additional finding emerged from the analysis of 

infant habituation. From this task, there is some data loss due to fussiness or crying at each 

age. The proportion of loss varies widely across laboratories and across ages, although in 

this laboratory it tends to be between 10% and 20%. When we examined the distribution of 

infants whose data were unused due to behavioral state issues, we observed that these infants 

were significantly more likely to be from the Placebo group overall, especially at 6 and 9 

mo. It is important to keep in mind that testers were blind to assignment group when these 

determinations were made. The number and percentage of infants excluded due to fussiness/

crying as a function of randomized assignment are shown (see Table 1); the p values 

reported are from χ2 tests conducted on observed cell counts.

Discussion

This project represents one of a very few follow-up studies on the effects of prenatal 

maternal supplementation on infant attention during the first year. At 4, 6, and 9 months, 

infants from mothers supplemented with prenatal DHA were not different from infants from 

mothers in the placebo group on purely behavioral or HR measures, although infants from 

supplemented mothers showed a marginal trend to habituate more quickly across all ages. 

More importantly, however, infants from supplemented mothers maintained a consistent 

level of SA (a higher-quality attentional state strongly associated with stimulus processing) 

from 4 to 9 months, while SA dropped off across the first year in infants from non-
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supplemented mothers. Although this outcome measure is a standardized index, and the 

interpretation of this pattern of change is not definitive, we think it important to note that this 

specific profile (i.e., the maintenance of consistent levels of SA across the first year), has 

been previously reported to be associated with higher preschool vocabulary and intelligence 

scores at 4 years (26). It is of interest that a behavioral measures of sustained attention was 

also the only neuropsychological domain assessed at 5 years to be enhanced by maternal 

DHA supplementation during lactation (22).

Prenatal DHA supplementation did not affect measures of look duration or HR. An 

unexpected finding to emerge from this trial was the observation that attrition from the 

visual habituation task attributable to fussiness (i.e., a presumed indicator of regulation of 

behavioral state) was significantly lower for infants of DHA supplemented mothers overall 

(and in particular at 6 and 9 months), suggesting another possible effect of early DHA status 

on infant development.

Lower HR has been reported in infants who are supplemented with DHA and arachidonic 

acid (ARA) and with fish oil (23, 27), however, we did not find an effect of prenatal 

supplementation with DHA on HR. All children in the study were receiving DHA and ARA 

at the time they were tested, either from infant formula or human milk feeding. Although no 

findings in this area are yet definitive, this pattern of results is consistent with effects 

attributable to the presence of LCPUFA or DHA in the individual’s diet, rather than to an 

early programming effect. Our group has shown previously that fetal HR variability is 

increased by prenatal DHA supplementation with 600 mg/d of DHA (28) and higher HR 

variability is linked to cognitive measures such as arousal and attention (29), but to our 

knowledge a link between fetal HR variability and cognitive function in infancy has not been 

investigated.

This trial has its limitations. Blood levels did show that the prenatal supplementation did 

affect DHA levels in both maternal and cord blood at delivery; however, we did not control 

for postnatal dietary intake, although we recorded it at regular intervals in the first 12 

months of life. As noted above, all infants in the study received DHA and ARA from either 

human milk or modern infant formulas that include DHA and ARA. Despite postnatal 

consumption of DHA and ARA, the pattern of effects seen here following prenatal DHA 

supplementation (i.e., differences observed on early attention outcomes, but not on 

standardized developmental tests) echo those for a postnatal feeding trial of DHA and ARA 

supplementation that yielded strong effects on cognition and language when children were 

followed into the preschool period (23, 30). Our data suggest, therefore, that there are 

benefits to prenatal DHA supplementation in our US population over and above those of 

receiving DHA and ARA after birth. In addition, our decision not to invite children born <34 

weeks to participate in follow-up could be criticized, however, we did not wish to conflate 

any longer-term direct effect of DHA on these children’s developmental outcome with the 

indirect effect of early preterm birth. A strength of the study is the relatively large size of the 

groups studied compared to most studies of infant development, which reduces the 

likelihood of a Type II error for some of the outcomes that were not affected by DHA 

supplementation.
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In summary, prenatal maternal DHA supplementation conferred advantages for the infants 

on attentional tasks (SA and behavioral state) during the first year of life. The pattern of 

effects seen here parallels that found for a postnatal feeding trial with DHA and arachidonic 

acid that yielded strong effects on cognition and language when children were followed into 

the preschool period (23, 30), and suggests that benefits of prenatal DHA supplementation 

might persist into the preschool period despite the fact that all in the cohort were fed a 

source of DHA and arachidonic acid during the first year of life.

Methods

Subjects

The Consolidated Standards of Reporting Trials (CONSORT) Diagram for the RCT is 

shown here (see Figure 3). Subjects were consented at enrollment during pregnancy for all 

follow-up measures. Details regarding the enrollment, randomization, blinding, Data Safety 

and Monitoring Board (DSMB) function, data checking and integrity, inclusion/exclusion 

criteria, compliance, and demographics of the sample are reported in the primary paper from 

this RCT (2). Informed consent was obtained from all participants and the study was 

approved by the University of Kansas Medical Center Human Subjects Committee. We 

invited all infants born to women in the Kansas University DHA Outcomes Study (KUDOS) 

pregnancy trial to participate in follow-up. In making those invitations, we made the 

strategic decision to exclude infants born <34 weeks gestation (n=8), because premature 

infants show impoverished performance on visual habituation tasks (31) and experience 

significant delays on standardized tests in toddlerhood (32) and because we predicted that 

this group would be differentially distributed between the placebo and supplemented groups. 

We reasoned that, by excluding early preterms, the follow-up would provide a more direct 

test of the effects of prenatal DHA supplementation on later infant development, rather than 

reveal effects that might be moderated by reductions in prematurity.

Subjects received either 3 capsules/d of an orange-flavored marine algae-oil source of DHA 

(200 mg DHA/capsule, DHASCO, from DSM Nutritional Products, Parsippany, NJ, USA; 

formerly Martek Biosciences) from enrollment at a mean 14.5 weeks gestation until birth 

(treatment), or 3 capsules containing half soybean and half corn oil (placebo, also orange-

flavored). DSM Nutritional Products donated the capsules for the study but had no role in 

the study design, analysis, interpretation, or dissemination.

This clinical trial had two general aims. The first aim was to determine the effect of prenatal 

DHS supplementation on pregnancy outcomes. These outcomes (for which the study was 

powered) are reported in a previous publication (2) and the hypotheses were supported: 

supplementation increased gestation, birth weight, and birth length. In addition, DHA was 

observed to reduce the number of early preterm deliveries (<34 weeks gestation). The 

second primary aim of the trial was to determine the effects of prenatal DHA on 

development of infants born to these mothers. The current report focuses on visual 

habituation from 4 to 9 months of age. Per standard clinical trial methodology, testers 

remained blind to assignment group for all determinations, data coding, and analysis.
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The demographic characteristics of the sample not followed up versus the characteristics of 

the sample that was followed after birth are shown (see Table 2). Compared to the children 

in the study not in the follow-up sample, those in the follow-up sample had mothers who 

were more compliant with capsule intake. However, the cohort included all major US racial/

ethnic groups with a wide range of education and income. The demographic characteristics 

of the follow-up sample broken out by Placebo vs. Supplemented groups are also shown (see 

Table 3

Longitudinal Measures

We chose postnatal measures based on the extant literature showing DHA affecting 

behavioral measures of visual attention (9). Visual habituation was administered at multiple 

time points to provide data on developmental trajectories to ensure assessment at points of 

maximum developmental sensitivity (33).

Visual Habituation and Heart Rate—Infants were evaluated at 4, 6, and 9 months of 

age (corrected for gestational age) on a visual habituation protocol that was augmented with 

simultaneous measurement of HR. This outcome is well-suited to the first year but less 

appropriate beyond 12 months, when infants become increasingly mobile (34). Visual 

habituation is a well-known measure of nonassociative visual learning, in which the infant’s 

visual and cardiac responses are assessed to repeated stimulus presentations. In this 

procedure, the infant is seated in a darkened room facing a screen on which visual stimuli 

are shown. The stimulus is shown repeatedly, and observers code infants’ looking to the 

stimuli over the repetitive presentations and HR is simultaneously collected during the 

session. Look duration decreases over the course of these repetitions. The decline in looking 

(habituation) reflects the infant’s learning and memory for the presented stimulus, and HR 

reflects the quality of the infant’s attention during looking; HR deceleration during looking 

is associated with engagement and active processing of the stimulus shown. The 

presentations continue until the infant’s looking declines (habituates) to a predetermined 

criterion. Details of the testing situation and recording of infant looking are reported 

elsewhere and the protocol was identical to that used in an RCT on postnatal feeding (23, 

30).

The stimuli used were two-dimensional faces of adults showing neutral expressions; the 

same set was used in a previous RCT involving zinc and iron (35). Along with allowing for 

the calculation of infant HR during the session, this protocol also allows for the derivation of 

different types or phases of attention during looking (36); most notable among those phases 

is sustained attention (SA), which reflects active processing of the stimulus. As in previous 

reports (23, 30), the primary measures of interest were look duration during habituation, 

which reflects how quickly the stimulus is learned (34); and the proportion of time looking 

spent in SA, which indicates the proportion of time spent engaged and processing the 

stimulus (37, 38).

Statistical Analysis

Analyses—Given that longitudinal data were available at 4, 6, and 9 months of age, we 

conducted mixed-model analyses (which use all available data) with Subjects as a random 
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factor, Age as a within-subject factor, and DHA group as a between-subject factor 

(preliminary analyses involving infant gender did not yield significant effects or 

interactions). Covariance was left unstructured as a conservative default. After initial tests 

were performed, appropriate demographic covariates were entered into analyses in order to 

rule out alternative plausible explanations for significant outcomes.

Analyses of look duration variables from visual habituation were conducted only on data 

from sessions that were complete and judged (by blinded observers) to have yielded usable 

data; analyses of HR and HR-defined phases from visual habituation were conducted on 

complete and usable habituation sessions but further required HR data from sessions judged 

(again, by blinded HR coders) to be usable. Infants’ data were also excluded for reasons 

unrelated to fussiness (experimenter error, equipment failure, and parental interference). The 

number of sessions analyzed are presented in the CONSORT diagram.

Measures Analyzed—The measures analyzed from the visual habituation paradigm were 

derived from three basic categories. The first category included behavioral measures of peak 

look duration and number of looks to habituation; look duration has been reported to be 

affected by DHA status in one study of prenatal maternal supplementation (9) but not in a 

subsequent clinical trial of postnatal feeding (23). The second category was infants’ heart 

rate (HR) during the various points of the habituation protocol, which has been shown to be 

affected by postnatal supplementation (23, 28). The third category reflected a coupling of 

behavior and HR (39, 40), and included the proportion of time spent in HR-defined phases 

of attention. During periods of looking in the habituation procedure, infants typically show 

robust and sustained HR decelerations. Considerable evidence suggests that active 

engagement and processing of the visual stimulus occurs when the infant’s HR is 

decelerated (38). The use of HR during infant looking allows attention to be parsed into 

separate phases of SA (the period of HR deceleration seen during infant looking), OR (the 

phase of looking prior to the occurrence of deceleration), and AT (the phase during which 

the infant remains looking after SA but after HR has returned to baseline levels). Details on 

the computation of these variables are available in numerous previously-published reports 

(23, 30).
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Figure 1. 
Infant HR during the various phases of habituation trials analyzed with mixed models. For 

ease of exposition, values are collapsed across multiple looks during the habituation session. 

Although the graph shows the well-documented and highly robust changes in HR with age 

over the first year and the deceleration seen during infant looking while in SA, there are no 

differences between Supplemented (solid line) and Placebo (dashed line) groups at any point 

during the trial. The top pair of solid/dashed lines are data from 4 month-olds, the middle 

pair are from 6-month-olds, and the bottom pair are from 9-month-olds. The downward-

pointing arrow represents the onset of the stimulus; the box represents encapsulates the 

period during which infants were looking at the stimulus. HR = heart rate, SA = sustained 

attention, PreStim = prestimulus period (before onset of stimulus), OR = orienting, AT = 

attention termination, Postlook = postlook period (after look is terminated but before 

withdrawal of stimulus). Data points represent successfully completed habituation sessions 

where HR data could be successfully coded: n=159 (n=72 and n=87 placebo and 

supplemented, respectively) at 4 months, n=172 (n=71 and n=101) at 6 months, and n=156 

(n=68 and n=88) at 9 mo.
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Figure 2. 
Modeled data for proportion of time infants spent looking in SA as a function of randomized 

group assignment. Data are averaged across 4, 6, and 9 mo and reflect the significant Age X 

DHA Group interaction. Infants in the Placebo group (dashed line) showed a decrease in SA 

with age, infants in the Supplemented group (solid line) maintained levels of SA across the 

first year. Data shown are from completed habituation sessions where HR could be 

successfully coded: n=159 (n=72 and n=87 placebo and supplemented, respectively) at 4 

months, n=172 (n=71 and n=101) at 6 months, and n=156 (n=68 and n=88) at 9 mo.
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Figure 3. 
CONSORT diagram for follow-up of RCT on DHA prenatal supplementation. The attrition 

from delivery to the first-year tasks was 31.9% for the placebo group and 22.1% for the 

supplemented group.
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Table 2

Participants in the RCT follow-up versus those who did not participate

Variable Not Followed Up
(N=71)

Followed Up
(N=230)

Effect
sizea

pb

Gestation at enrollment (d) 15.2 ± 3.7c 14.6 ± 3.5 0.18 ns

Gestation at delivery (d) 38.5 ± 3.3 39.4 ± 1.4 0.45 <.05

Birthweight (g) 2997 ± 731 3357 ± 231 0.63 <.001

Birth length (cm) 47.9 ± 4.1 49.8 ± 2.6 0.61 <.001

Birth Head Circumference (cm) 32.8 ± 2.6 34.2 ±1.6 0.73 <.001

Pre-Pregnancy BMI 24.7 ± 4.9 25.5 ± 4.9 0.16 ns

Additional supplemental DHA during
Pregnancy (%)

3 17 1.04 <.001

Additional supplemental DHA during
Pregnancy (mg/d)

4.9 ± 29.3 36.5 ± 84.4 0.40 <.001

Iron Supplement during Pregnancy
(%)

27 21 0.18 ns

Average capsules taken (per wk) 11.2 ± 5.4 17.1 ± 4.4 1.08 <.001

History of smoking (%) 39 44 0.11 ns

History of smoking (pack-years)d 1.1 ± 2.5 1.7 ± 3.5 0.18 ns

Smoked during pregnancy (%) 31 34 0.07 ns

Smoking during Pregnancy
(cigarettes/d)

1.9 ± 3.4 2.0 ± 4.4 0.02 ns

Alcohol use before Pregnancy (%) 34 60 0.59 <.001

Alcohol used during Pregnancy (%)
(no. drinks/d)

0.04 ± 0.3 0.00 ± 0.0 0.23 ns

Maternal Age at Enrollment (y) 23.4 ± 4.3 26.0 ± 4.8 0.54 <.001

Maternal ethnicity (% Hispanic) 13 6 0.47 ns

Maternal race (% Black) 64 31 0.75 <.001

Maternal PPVT 96.8 ± 14.4 99.5 ± 15.2 0.18 ns

Maternal Education (y) 12.5 ± 2.1 14.11 ± 2.8 0.60 <.001

Income by Zip Code (US$) 39,959 ± 20,619 46,377 ± 17,778 0.34 <.05

a
Cohen’s d for continuous variables and logit d for binary variables. Cohen’s d effect sizes are typically characterized as small (0.2 to 0.5), medium 

(0.5 to 0.8) or large (0.8 and above).

b
CONSORT guidelines do not recommend significance testing for data such as these, but we have provided p values. We caution against drawing 

substantive conclusions from these values as they are presented strictly as summary statistics and not for statistical significance.

c
Mean ± SD (all such values); determined by using SPSS (IBM, Armonk, NY, USA);.

d
Years smoked × packs/d.
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Table 3

Comparison of infants followed whose mothers received prenatal DHA supplement versus those whose 

mothers received a placebo.

Variable Placebo
(N=107)

Supplement
(N=123)

Effect
sizea

p

GA at Enrollment (weeks) 14.0 ± 3.5b 15.0 ± 3.4 0.29 <.05

GA at Delivery (weeks) 39.4 ± 1.1 39.4 ± 1.6 0.05 ns

Birthweight (g) 3306 ± 422 3400 ± 528 0.19 ns

Birth Length (cm) 49.7 ± 2.4 49.9 ± 2.7 0.06 ns

Birth Head Circumference (cm) 34.1 ± 1.2 34.4 ± 1.9 0.15 ns

Pre-Pregnancy BMI 25.0 ± 4.8 26.0 ± 5.0 0.20 ns

Additional supplemental DHA
during Pregnancy (%)

22 12 0.40 <.05

Additional supplemental DHA
during Pregnancy (mg/d)

47.1 ± 92.5 27.5 ± 75.9 0.23 ns

Iron Supplement during
Pregnancy (%)

21 22 0.03 ns

Average capsules taken (per wk) 17.0 ± 4.4 17.3 ± 4.4 0.07 ns

History of smoking (%) 48 40 0.17 ns

History of smoking (pack-years)c 2.0 ± 3.8 1.4 ± 3.2 0.16 ns

Smoking during Pregnancy (%) 40 29 0.27 ns

Smoking during Pregnancy
(cigarettes/d)

2.4 ± 5.1 1.7 ± 3.8 0.16 ns

Alcohol before Pregnancy (%) 62 59 0.07 ns

Alcohol before Pregnancy (no.
drinks/d)

0.3 ± 0.8 0.1 ± 0.4 0.20 ns

Alcohol during Pregnancy (%) 3 1 0.62 ns

Alcohol during Pregnancy no.
drinks/d)

0.0 ± 0.00 0.0 ± 0.00 0.00 ns

Maternal Age at Enrollment (y) 26.0 ± 4.9 26.0 ± 4.8 0.00 ns

Maternal ethnicity (% Hispanic) 8 4 0.18 ns

Maternal race (% Black) 35 28 0.18 ns

Maternal PPVT 99.1 ± 15.8 99.7 ± 14.7 0.04 ns

Maternal Education (y) 13.9 ± 2.9 14.3 ± 2.7 0.15 ns

Income by Zip Code (US$) 44,625 ±17,409 47,898 ± 18,024 0.18 ns

a
Cohen’s d for continuous variables and logit d for binary variables. Cohen’s d effect sizes are typically characterized as small (0.2 to 0.5), medium 

(0.5 to 0.8) or large (0.8 and above).

b
Mean ± SD.(all such values); determined by using SPSS (IBM);

c
Years smoked × packs/d
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