29 research outputs found

    Retrieval of Context-Associated Memory is Dependent on the Cav3.2 T-Type Calcium Channel

    Get PDF
    Among all voltage-gated calcium channels, the T-type Ca2+ channels encoded by the Cav3.2 genes are highly expressed in the hippocampus, which is associated with contextual, temporal and spatial learning and memory. However, the specific involvement of the Cav3.2 T-type Ca2+ channel in these hippocampus-dependent types of learning and memory remains unclear. To investigate the functional role of this channel in learning and memory, we subjected Cav3.2 homozygous and heterozygous knockout mice and their wild-type littermates to hippocampus-dependent behavioral tasks, including trace fear conditioning, the Morris water-maze and passive avoidance. The Cav3.2 −/− mice performed normally in the Morris water-maze and auditory trace fear conditioning tasks but were impaired in the context-cued trace fear conditioning, step-down and step-through passive avoidance tasks. Furthermore, long-term potentiation (LTP) could be induced for 180 minutes in hippocampal slices of WTs and Cav3.2 +/− mice, whereas LTP persisted for only 120 minutes in Cav3.2 −/− mice. To determine whether the hippocampal formation is responsible for the impaired behavioral phenotypes, we next performed experiments to knock down local function of the Cav3.2 T-type Ca2+ channel in the hippocampus. Wild-type mice infused with mibefradil, a T-type channel blocker, exhibited similar behaviors as homozygous knockouts. Taken together, our results demonstrate that retrieval of context-associated memory is dependent on the Cav3.2 T-type Ca2+ channel

    Rapid niche expansion by selection on functional genomic variation after ecosystem recovery

    Get PDF
    It is well recognized that environmental degradation caused by human activities can result in dramatic losses of species and diversity. However, comparatively little is known about the ability of biodiversity to re-emerge following ecosystem recovery. Here, we show that a European whitefish subspecies, the gangfisch Coregonus lavaretus macrophthalmus, rapidly increased its ecologically functional diversity following the restoration of Lake Constance after anthropogenic eutrophication. In fewer than ten generations, gangfisch evolved a greater range of gill raker numbers (GRNs) to utilize a broader ecological niche. A sparse genetic architecture underlies this variation in GRN. Several co-expressed gene modules and genes showing signals of positive selection were associated with GRN and body shape. These were enriched for biological pathways related to trophic niche expansion in fishes. Our findings demonstrate the potential of functional diversity to expand following habitat restoration, given a fortuitous combination of genetic architecture, genetic diversity and selection

    Green Supply Chain, Logistics, and Transportation

    No full text
    This chapter presents the concepts of green supply chain network, green supply chain management, and green logistics . Increasing environmental concerns requires companies to become more responsive to products that either has been returned or that are at the end of their useful lives. Organization’s responsiveness and their reactions toward life cycles of products are critical to achieve sustained success once fluctuations are recurrent and the business environments are turbulent. Life cycles are getting shorter, and effective managing can save large amounts of cash as many materials can be extracted, reused, and redistributed. Alongside this context, this chapter focuses on a general overview toward closed-loop supply chains and offers a generalized optimization model . In addition, incentive approaches for an optimal recovery plan in a closed-loop supply chain are discussed in this chapter

    A New Fuzzy Multi-criteria Decision Making Approach: Extended Hierarchical Fuzzy Axiomatic Design Approach with Risk Factors

    No full text
    In recent years, Axiomatic Design (AD) has been widely used as a multi criteria decision making approach. AD approach compares the design objects and system capabilities in a framework and then selects the best alternative based on these comparisons. Some researchers then include fuzziness in the AD approach which helps to evaluate alternatives in fuzzy environments. The main advantage of fuzzy AD approach is the ability to evaluate both crisp and fuzzy values at the same time during decision process. However, these approaches are not appropriate for hierarchical decision problems. Therefore, these are extended to solve the hierarchical decision problems and Hierarchical Fuzzy Axiomatic Design Approach (HFAD) is presented. In this study, HFAD is extended to include risk factors for the first time in literature and a new approach called RFAD is proposed. Moreover, the application of the new approach is shown on a real world supplier selection problem and the results are compared to the other widely used decision making approaches in literature. © Springer International Publishing Switzerland 2014

    Subchronic rolipram delivery activates hippocampal CREB and Arc. enhances retention and slows down extinction of conditioned fear.

    No full text
    Rolipram, a type IV-specific phosphodiesterase inhibitor, is known to improve memory under various learning tasks. Moreover, Rolipram treatments have been shown to increase expression and phosphorylation of a key factor for hippocampal memory consolidation, the cAMP-dependent response element-binding protein, CREB. However, the exact correlation between hippocampal CREB phosphorylation and memory improvement induced by Rolipram has not yet been determined in a CREB-dependent type of hippocampal-related learning in normogenic, intact rodents. Here, we report that subchronic Rolipram delivery by using osmotic minipumps increased the basal rat hippocampal expression and phosphorylation of CREB, as well as the expression of the cAMP-dependent, memory-related protein, Arc. In parallel, the same treatment improved memory consolidation of conditioned fear. Furthermore, the increase of CREB phosphorylation and Arc expression consequent to the learning experience was enhanced in Rolipram-treated rats, compared to controls. By evaluating the time course of memory extinction over 10 days after the initial learning test, we also observed significant slowing down of the memory extinction rate in Rolipram-treated rats. This effect could be attributed to CREB phosphorylation and memory having been initially higher, as osmotic minipumps stopped to release Rolipram the first day after the initial learning test. Our data define the conditions through which the pharmacological manipulation of hippocampal CREB expression and activation result in memory amelioration in normogenic, intact animals. These results are relevant for the study of molecular correlates of memory, and may also be important in view of the efforts to design new pharmacological treatments, targeting the CREB pathway and leading to enhancement of learning and memory, even in the absence of patent neuropatholog

    Interplay between TETs and microRNAs in the adult brain for memory formation

    No full text
    Abstract 5-hydroxymethylation (5-hmC) is an epigenetic modification on DNA that results from the conversion of 5-methylcytosine by Ten-Eleven Translocation (TET) proteins. 5-hmC is widely present in the brain and is subjected to dynamic regulation during development and upon neuronal activity. It was recently shown to be involved in memory processes but currently, little is known about how it is controlled in the brain during memory formation. Here, we show that Tet3 is selectively up-regulated by activity in hippocampal neurons in vitro, and after formation of fear memory in the hippocampus. This is accompanied by a decrease in miR-29b expression that, through complementary sequences, regulates the level of Tet3 by preferential binding to its 3′UTR. We newly reveal that SAM68, a nuclear RNA-binding protein known to regulate splicing, acts upstream of miR-29 by modulating its biogenesis. Together, these findings identify novel players in the adult brain necessary for the regulation of 5-hmC during memory formation
    corecore