11 research outputs found

    NK-, NKT-and CD8-derived IFNγ drives myeloid cell activation and erythrophagocytosis, resulting in Trypanosomosis-associated acute anemia

    Get PDF
    African trypanosomes are the causative agents of Human African Trypanosomosis (HAT/Sleeping Sickness) and Animal African Trypanosomosis (AAT/Nagana). A common hallmark of African trypanosome infections is inflammation. In murine trypanosomosis, the onset of inflammation occurs rapidly after infection and is manifested by an influx of myeloid cells in both liver and spleen, accompanied by a burst of serum pro-inflammatory cytokines. Within 48 hours after reaching peak parasitemia, acute anemia develops and the percentage of red blood cells drops by 50%. Using a newly developed in vivo erythrophagocytosis assay, we recently demonstrated that activated cells of the myeloid phagocytic system display enhanced erythrophagocytosis causing acute anemia. Here, we aimed to elucidate the mechanism and immune pathway behind this phenomenon in a murine model for trypanosomosis. Results indicate that IFNγ plays a crucial role in the recruitment and activation of erythrophagocytic myeloid cells, as mice lacking the IFNγ receptor were partially protected against trypanosomosis-associated inflammation and acute anemia. NK and NKT cells were the earliest source of IFNγ during T. b. brucei infection. Later in infection, CD8+ and to a lesser extent CD4+ T cells become the main IFNγ producers. Cell depletion and transfer experiments indicated that during infection the absence of NK, NKT and CD8+ T cells, but not CD4+ T cells, resulted in a reduced anemic phenotype similar to trypanosome infected IFNγR-/- mice. Collectively, this study shows that NK, NKT and CD8+ T cell-derived IFNγ is a critical mediator in trypanosomosis-associated pathology, driving enhanced erythrophagocytosis by myeloid phagocytic cells and the induction of acute inflammation-associated anemia

    Functional comparison of mouse CIRE/mouse DC-SIGN and human DC-SIGN

    No full text
    CIRE/mDC-SIGN is a C-type lectin we originally identified as a molecule differentially expressed by mouse dendritic cell (DC) populations. Immunostaining with a CIRE/mDC-SIGN-specific mAb revealed that CIRE/mDC-SIGN is indeed on the surface of some CD4+, CD4- 8- DCs and plasmacytoid pre-DCs, but not on CD8+ DCs. It has been proposed that CIRE/mDC-SIGN is the functional orthologue of human DC-SIGN (hDC-SIGN), a molecule that both enhances T cell responses and facilitates antigen uptake. We assessed if CIRE/mDC-SIGN and hDC-SIGN exhibit functional similarities. CIRE/mDC-SIGN is down-regulated upon activation, but unlike hDC-SIGN, incubation with IL-4 and IL-13 did not enhance CIRE/mDC-SIGN expression, indicating differences in gene regulation. Like hDC-SIGN, CIRE/mDC-SIGN bound mannosylated residues. However, we could detect no role for CIRE/mDC-SIGN in T cell-DC interactions and the protein did not bind to pathogens known to interact with hDC-SIGN, including Leishmania mexicana, cytomegalovirus, HIV and lentiviral particles bearing the Ebolavirus glycoprotein. The binding of CIRE/mDC-SIGN to hDC-SIGN ligands was not rescued when CIRE/mDC-SIGN was engineered to express the stalk region of hDC-SIGN. We conclude that there are significant differences in the fine specificity of the C-type lectin domains of hDC-SIGN and CIRE/mDC-SIGN and that these two molecules may not be functional orthologues

    Interaction between conventional dendritic cells and natural killer cells is integral to the activation of effective antiviral immunity

    No full text
    Dendritic cells (DCs) regulate various aspects of innate immunity, including natural killer (NK) cell function. Here we define the mechanisms involved in DC - NK cell interactions during viral infection. NK cells were efficiently activated by murine cytomegalovirus ( MCMV) - infected CD11b(+) DCs. NK cell cytotoxicity required interferon-alpha and interactions between the NKG2D activating receptor and NKG2D ligand, whereas the production of interferon-gamma by NK cells relied mainly on DC-derived interleukin 18. Although Toll-like receptor 9 contributes to antiviral immunity, we found that signaling pathways independent of Toll-like receptor 9 were important in generating immune responses to MCMV, including the production of interferon-alpha and the induction of NK cell cytotoxicity. Notably, adoptive transfer of MCMV-activated CD11b(+) DCs resulted in improved control of MCMV infection, indicating that these cells participate in controlling viral replication in vivo

    What rheumatologists need to know about innate lymphocytes

    No full text
    Many rheumatic diseases are characterized by having an autoimmune background. Determining the mechanisms underlying autoimmunity is, therefore, important to further understand these diseases and to inform future lines of research aimed at developing new treatments and cures. As fast responders, innate lymphocytes have protective or pathogenic roles in the initiation as well as the maintenance of immune responses in general, and they contribute to tissue homeostasis, among other functions. Innate lymphocytes also seem to be involved in autoimmunity in particular. Since 2010, accumulating evidence clearly shows that different populations of innate lymphocytes have roles in responding to antigen-specific autoantibody and autoreactive T cells, thereby amplifying or attenuating disease processes. Cytotoxicity is a cardinal feature of many innate lymphocytes and can contribute to inflammatory tissue damage. Finally, innate lymphocytes can respond to biologic therapies for autoimmune diseases. Consequently, like TNF and other effector molecules, certain innate lymphocyte subsets might be appropriate therapeutic targets to ameliorate various autoimmune diseases. In this Review, we summarize the main characteristics and functions of innate lymphocyte subsets, and describe their roles in autoimmune disease. We also discuss how biologic therapies influence innate lymphocyte function and consider the potential for these cell subsets to act as future therapeutic targets

    Functions of natural killer cells.

    No full text
    International audienceNatural killer (NK) cells are effector lymphocytes of the innate immune system that control several types of tumors and microbial infections by limiting their spread and subsequent tissue damage. Recent research highlights the fact that NK cells are also regulatory cells engaged in reciprocal interactions with dendritic cells, macrophages, T cells and endothelial cells. NK cells can thus limit or exacerbate immune responses. Although NK cells might appear to be redundant in several conditions of immune challenge in humans, NK cell manipulation seems to hold promise in efforts to improve hematopoietic and solid organ transplantation, promote antitumor immunotherapy and control inflammatory and autoimmune disorders
    corecore