53 research outputs found

    Exploring T and S parameters in Vector Meson Dominance Models of Strong Electroweak Symmetry Breaking

    Get PDF
    We revisit the electroweak precision tests for Higgsless models of strong EWSB. We use the Vector Meson Dominance approach and express S and T via couplings characterizing vector and axial spin-1 resonances of the strong sector. These couplings are constrained by the elastic unitarity and by requiring a good UV behavior of various formfactors. We pay particular attention to the one-loop contribution of resonances to T (beyond the chiral log), and to how it can improve the fit. We also make contact with the recent studies of Conformal Technicolor. We explain why the second Weinberg sum rule never converges in these models, and formulate a condition necessary for preserving the custodial symmetry in the IR.Comment: 35 pages, 7 figures; v3: refs added, to appear in JHE

    Weaned age variation in the Virunga mountain gorillas (Gorilla beringei beringei)

    Get PDF
    The final publication is available at Springer via http://dx.doi.org/10.1007/s00265-016-2066-6Weaning marks an important milestone during life history in mammals indicating nutritional independence from the mother. Age at weaning is a key measure of maternal investment and care, affecting female reproductive rates, offspring survival and ultimately the viability of a population. Factors explaining weaned age variation in the endangered mountain gorilla are not yet well understood. This study investigated the impact of group size, group type (one-male versus multi-male), offspring sex, as well as maternal age, rank, and parity on weaned age variation in the Virunga mountain gorilla population. The status of nutritional independence was established in 69 offspring using long-term suckling observations. A Cox-regression with mixed effects was applied to model weaned age and its relationship with covariates. Findings indicate that offspring in one-male groups are more likely to be weaned earlier than offspring in multi-male groups, which may reflect a female reproductive strategy to reduce higher risk of infanticide in one-male groups. Inferior milk production capacity and conflicting resource allocation between their own and offspring growth may explain later weaning in primiparous mothers compared to multiparous mothers. Sex-biased weaned age related to maternal condition defined by parity, rank, and maternal age will be discussed in the light of the Trivers-Willard hypothesis. Long-term demographic records revealed no disadvantage of early weaning for mother or offspring. Population growth and two peaks in weaned age within the Virunga population encourage future studies on the potential impact of bamboo shoots as a weaning food and other environmental factors on weaning

    GABAergic inhibition is weakened or converted into excitation in the oxytocin and vasopressin neurons of the lactating rat

    Get PDF
    BACKGROUND: Increased secretion of oxytocin and arginine vasopressin (AVP) from hypothalamic magnocellular neurosecretory cells (MNCs) is a key physiological response to lactation. In the current study, we sought to test the hypothesis that the GABA(A) receptor-mediated inhibition of MNCs is altered in lactating rats. RESULTS: Gramicidin-perforated recordings in the rat supraoptic nucleus (SON) slices revealed that the reversal potential of GABA(A) receptor-mediated response (E(GABA)) of MNCs was significantly depolarized in the lactating rats as compared to virgin animals. The depolarizing E(GABA) shift was much larger in rats in third, than first, lactation such that GABA exerted an excitatory, instead of inhibitory, effect in most of the MNCs of these multiparous rats. Immunohistochemical analyses confirmed that GABAergic excitation was found in both AVP and oxytocin neurons within the MNC population. Pharmacological experiments indicated that the up-regulation of the Cl(−) importer Na(+)-K(+)-2Cl(−) cotransporter isotype 1 and the down-regulation of the Cl(−) extruder K(+)-Cl(−) cotransporter isotype 2 were responsible for the depolarizing shift of E(GABA) and the resultant emergence of GABAergic excitation in the MNCs of the multiparous rats. CONCLUSION: We conclude that, in primiparous rats, the GABAergic inhibition of MNCs is weakened during the period of lactation while, in multiparous females, GABA becomes excitatory in a majority of the cells. This reproductive experience-dependent alteration of GABAergic transmission may help to increase the secretion of oxytocin and AVP during the period of lactation

    Possible role(s) of interferon regulation of inflammasome activity via autophagy

    No full text
    Poster PresentationThe Conference programme's website is located at http://paed.hku.hk/goldenjubilee/index.htm

    A Zebrafish Model for a Human Myopathy Associated with Mutation of the Unconventional Myosin MYO18B

    No full text
    This is the final version of the article. Available from Genetics Society of America via the DOI in this record.Myosin 18B is an unconventional myosin that has been implicated in tumor progression in humans. In addition, loss-of-function mutations of the MYO18B gene have recently been identified in several patients exhibiting symptoms of nemaline myopathy. In mouse, mutation of Myo18B results in early developmental arrest associated with cardiomyopathy, precluding analysis of its effects on skeletal muscle development. The zebrafish, frozen (fro) mutant was identified as one of a group of immotile mutants in the 1996 Tübingen genetic screen. Mutant embryos display a loss of birefringency in their skeletal muscle, indicative of disrupted sarcomeric organization. Using meiotic mapping, we localized the fro locus to the previously unannotated zebrafish myo18b gene, the product of which shares close to 50% identity with its human ortholog. Transcription of myo18b is restricted to fast-twitch myocytes in the zebrafish embryo; consistent with this, fro mutant embryos exhibit defects specifically in their fast-twitch skeletal muscles. We show that sarcomeric assembly is blocked at an early stage in fro mutants, leading to the disorganized accumulation of actin, myosin, and α-actinin and a complete loss of myofibrillar organization in fast-twitch muscles.This research project was initially funded by a UK Medical Research Council (MRC) Programme grant (G0100151) and subsequently by core support from the IMCB, the Lee Kong Chian School of Medicine (Nanyang Technological University), and the Living Systems Institute (University of Exeter). P.W.I. gratefully acknowledges the support of the Toh Kian Chui foundation
    • …
    corecore