246 research outputs found

    Commitment during stenotele differentiation in Hydra is localized near the S/G2 boundary in the terminal cell cycle

    Get PDF
    The timing of commitment during stenotele differentiation in Hydra was determined. Regeneration of isolated distal regions of the body column induces stenotele differentiation. The kinetics of appearance of committed stenotele precursors was determined in such regenerating pieces. Using [3H]thymidine labeling and hydroxyurea sensitivity, the G1/S and the S/G2 boundaries of the precursor population was also determined. Comparison of these results indicates that stenotele commitment is localized near the S/G2 boundary in the terminal cell cycle of nests of precursor cells

    Microtubule structure by cryo-EM: snapshots of dynamic instability

    Get PDF
    The development of cryo-electron microscopy (cryo-EM) allowed microtubules to be captured in their solution-like state, enabling decades of insight into their dynamic mechanisms and interactions with binding partners. Cryo-EM micrographs provide 2D visualization of microtubules, and these 2D images can also be used to reconstruct the 3D structure of the polymer and any associated binding partners. In this way, the binding sites for numerous components of the microtubule cytoskeleton - including motor domains from many kinesin motors, and the microtubule-binding domains of dynein motors and an expanding collection of microtubule associated proteins - have been determined. The effects of various microtubule-binding drugs have also been studied. High resolution cryo-EM structures have also been used to probe the molecular basis of microtubule dynamic instability, driven by the GTPase activity of β-tubulin. These studies have shown the conformational changes in lattice-confined tubulin dimers in response to steps in the tubulin GTPase cycle, most notably lattice compaction at the longitudinal inter-dimer interface. Although work is ongoing to define a complete structural model of dynamic instability, attention has focused on the role of gradual destabilization of lateral contacts between tubulin protofilaments, particularly at the microtubule seam. Furthermore, lower resolution cryo-electron tomography 3D structures are shedding light on the heterogeneity of microtubule ends and how their 3D organization contributes to dynamic instability. The snapshots of these polymers captured using cryo-EM will continue to provide critical insights into their dynamics, interactions with cellular components, and the way microtubules contribute to cellular functions in diverse physiological contexts

    Manufacturing Environment in the Year 2000

    No full text
    Manufacturing will change more in the next 15 years than it has in the last 75 years. The reasons are clear ... survival and technology. Unless U.S. companies can compete in a world economy on price, quality, design and delivery, our companies will not survive. The distinctions between the process industries and discrete manufacturers; between the manufacturing of electronics and machinery; between assembly and fabrication; between engineering and manufacturing will all tend to blend (or blur) as an economic lot size of one is approached

    CYTOPLASMIC MICROTUBULES

    No full text
    • …
    corecore