4 research outputs found

    Nuclear Shadowing and Antishadowing in a Unitarized BFKL Equation

    Full text link
    The nuclear shadowing and antishadowing effects are explained by a unitarized BFKL equation. The Q2Q^2- and xx-variations of the nuclear parton distributions are detailed based on the level of the unintegrated gluon distribution. In particular, the asymptotical behavior of the unintegrated gluon distribution near the saturation limit in nuclear targets is studied. Our results in the nuclear targets are insensitive to the input distributions if the parameters are fixed by the data of a free proton.Comment: 19 pages, 6 figures, to be appeared in Chinese Physics

    A Re-Evaluation of the nuclear Structure Function Ratios for D, He, Li, C and Ca

    Get PDF
    We present a re-evaluation of the structure function ratios F2(He)/F2(D), F2(C)/F2(D) and F2(Ca)/F2(D) measured in deep inelastic muon-nucleus scattering at an incident muon momentum of 200 GeV. We also present the ratios F2(C)/F2(Li), F2(Ca)/F2(Li) and F2(Ca)/F2(C) measured at 90 GeV. The results are based on data already published by NMC; the main difference in the analysis is a correction for the masses of the deuterium targets and an improvement in the radiative corrections. The kinematic range covered is 0.0035 < x < 0.65, 0.5 < Q^2 <90 GeV^2 for the He/D, C/D and Ca/D data and 0.0085 < x < 0.6, 0.84 < Q^2 < 17 GeV^2 for the Li/C/Ca ones.Comment: 6 pages, Latex, 3 figures as uuencoded compressed tar file included at the end, in case of problems contact [email protected] (Antje Bruell

    The Structure Function Ratios F2(Li)/F2(D) and F2(C)/F2(D) at small x

    Full text link
    We present the structure function ratios F2(Li)/F2(D) and F2(C)/F2(D) measured in deep inelastic muon-nucleus scattering at a nominal incident muon energy of 200 GeV. The kinematic range 0.0001 < x < 0.7 and 0.01< Q^2 < 70 GeV^2 is covered. For values of xx less than 0.0020.002 both ratios indicate saturation of shadowing at values compatible with photoabsorption results

    The Q(2) dependence of the structure function ratio F-2(Sn)/F-2(C) and the difference R(Sn)-R(C) in deep inelastic muon scattering

    No full text
    Arneodo M, Arvidson A, Badelek B, et al. The Q(2) dependence of the structure function ratio F-2(Sn)/F-2(C) and the difference R(Sn)-R(C) in deep inelastic muon scattering. Nucl.Phys. B. 1996;481(1-2):23-39.The Q(2) dependence of the structure function ratio F-2(Sn)/F-2(C) for 0.01 < x < 0.75 and 1 < Q(2) < 140 GeV2 is reported. For x < 0.1 the size of shadowing decreases linearly with In Q(2) and the maximum rate is about 0.04 at x = 0.01. The rate decreases with x and is compatible with zero for x greater than or equal to 0.1. The difference R(Sn) - R(C), where R is the ratio of longitudinally to transversely polarised virtual photon absorption cross sections, is also given. No dependence on x is seen and the average value is 0.040 +/- 0.021 (stat.) +/- 0.026 (syst.) at a mean Q(2) of 10 GeV2
    corecore