4,900 research outputs found

    High-throughput molecular technologies for unraveling the mystery of soil microbial community: challenges and future prospects

    Get PDF
    Soil microbial communities play a crucial role in soil fertility, sustainability, and plant health. However, intensive agriculture with increasing chemical inputs and changing environments have influenced native soil microbial communities. Approaches have been developed to study the structure, diversity, and activity of soil microbes to better understand the biology and plant-microbe interactions in soils. Unfortunately, a good understanding of soil microbial community remains a challenge due to the complexity of community composition, interactions of the soil environment, and limitations of technologies, especially related to the functionality of some taxa rarely detected using conventional techniques. Culture-based methods have been shown unable and sometimes are biased for assessing soil microbial communities. To gain further knowledge, culture-independent methods relying on direct analysis of nucleic acids, proteins, and lipids are worth exploring. In recent years, metagenomics, metaproteomics, metatranscriptomics, and proteogenomics have been increasingly used in studying microbial ecology. In this review, we examined the importance of microbial community to soil quality, the mystery of rhizosphere and plant-microbe interactions, and the biodiversity and multi-trophic interactions that influence the soil structure and functionality. The impact of the cropping system and climate change on the soil microbial community was also explored. Importantly, progresses in molecular biology, especially in the development of high-throughput biotechnological tools, were extensively assessed for potential uses to decipher the diversity and dynamics of soil microbial communities, with the highlighted advantages/limitations

    Paraoxonase 2 protein is spatially expressed in the human placenta and selectively reduced in labour

    Get PDF
    Humans parturition involves interaction of hormonal, neurological, mechanical stretch and inflammatory pathways and the placenta plays a crucial role. The paraoxonases (PONs 1–3) protect against oxidative damage and lipid peroxidation, modulation of endoplasmic reticulum stress and regulation of apoptosis. Nothing is known about the role of PON2 in the placenta and labour. Since PON2 plays a role in oxidative stress and inflammation, both features of labour, we hypothesised that placental PON2 expression would alter during labour. PON2 was examined in placentas obtained from women who delivered by cesarean section and were not in labour and compared to the equivalent zone of placentas obtained from women who delivered vaginally following an uncomplicated labour. Samples were obtained from 12 sites within each placenta: 4 equally spaced apart pieces were sampled from the inner, middle and outer placental regions. PON2 expression was investigated by Western blotting and real time PCR. Two PON2 forms, one at 62 kDa and one at 43 kDa were found in all samples. No difference in protein expression of either isoform was found between the three sites in either the labour or non-labour group. At the middle site there was a highly significant decrease in PON2 expression in the labour group when compared to the non-labour group for both the 62 kDa form (p = 0.02) and the 43 kDa form (p = 0.006). No spatial differences were found within placentas at the mRNA level in either labour or non-labour. There was, paradoxically, an increase in PON2 mRNA in the labour group at the middle site only. This is the first report to describe changes in PON2 in the placenta in labour. The physiological and pathological significance of these remains to be elucidated but since PON2 is anti-inflammatory further studies are warranted to understand its role

    A Nonaqueous Approach to the Preparation of Iron Phosphide Nanowires

    Get PDF
    Previous preparation of iron phosphide nanowires usually employed toxic and unstable iron carbonyl compounds as precursor. In this study, we demonstrate that iron phosphide nanowires can be synthesized via a facile nonaqueous chemical route that utilizes a commonly available iron precursor, iron (III) acetylacetonate. In the synthesis, trioctylphosphine (TOP) and trioctylphosphine oxide (TOPO) have been used as surfactants, and oleylamine has been used as solvent. The crystalline structure and morphology of the as-synthesized products were characterized by powder X-ray diffraction (XRD) and transmission electron microscopy (TEM). The obtained iron phosphide nanowires have a typical width of ~16 nm and a length of several hundred nanometers. Structural and compositional characterization reveals a hexagonal Fe2P crystalline phase. The morphology of as-synthesized products is greatly influenced by the ratio of TOP/TOPO. The presence of TOPO has been found to be essential for the growth of high-quality iron phosphide nanowires. Magnetic measurements reveal ferromagnetic characteristics, and hysteresis behaviors below the blocking temperature have been observed

    Spatiotemporal in vivo tracking of polyclonal human regulatory T cells (Tregs) reveals a role for innate immune cells in Treg transplant recruitment

    Get PDF
    Supplemental information is available online at: https://www.sciencedirect.com/science/article/pii/S2329050120302515#appsec2 .Regulatory T cells (Tregs) are emerging as a new cell-based therapy in solid organ transplantation. Adoptive transfer of Tregs has been shown preclinically to protect from graft rejection, and the safety of Treg therapy has been demonstrated in clinical trials. Despite these successes, the in vivo distribution and persistence of adoptively transferred Tregs remained elusive, which hampers clinical translation. Here we isolated human Tregs using a GMP-compatible protocol and lentivirally transduced them with the human sodium iodide symporter to render them traceable in vivo by radionuclide imaging. Engineered human Tregs were characterized for phenotype, survival, suppressive capacity, and reporter function. To study their trafficking behavior, they were subsequently administered to humanized mice with human skin transplants. Traceable Tregs were quantified in skin grafts by non-invasive nano-single-photon emission computed tomography (nanoSPECT)/computed tomography (CT) for up to 40 days, and the results were validated ex vivo. Using this approach, we demonstrated that Treg trafficking to skin grafts was regulated by the presence of recipient Gr-1+ innate immune cells. We demonstrated the utility of radionuclide reporter gene-afforded quantitative Treg in vivo tracking, addressing a fundamental need in Treg therapy development and offering a clinically compatible methodology for future Treg therapy imaging in humans.This work was supported by the British Heart Foundation (RG/13/12/30395), the MRC Centre for Transplantation at King's College London (MR/J006742/1), Cancer Research UK (C48390/A21153), and the Wellcome/EPSRC Centre for Medical Engineering (WT203148/Z/16/Z). This research was funded/supported by the National Institute for Health Research (NIHR) Biomedical Research Centre based at Guy’s and St Thomas’ NHS Foundation Trust and King’s College London and/or the NIHR Clinical Research Facility

    Seeking legitimacy through CSR: Institutional Pressures and Corporate Responses of Multinationals in Sri Lanka

    Get PDF
    Arguably, the corporate social responsibility (CSR) practices of multinational enterprises (MNEs) are influenced by a wide range of both internal and external factors. Perhaps most critical among the exogenous forces operating on MNEs are those exerted by state and other key institutional actors in host countries. Crucially, academic research conducted to date offers little data about how MNEs use their CSR activities to strategically manage their relationship with those actors in order to gain legitimisation advantages in host countries. This paper addresses that gap by exploring interactions between external institutional pressures and firm-level CSR activities, which take the form of community initiatives, to examine how MNEs develop their legitimacy-seeking policies and practices. In focusing on a developing country, Sri Lanka, this paper provides valuable insights into how MNEs instrumentally utilise community initiatives in a country where relationship-building with governmental and other powerful non-governmental actors can be vitally important for the long-term viability of the business. Drawing on neo-institutional theory and CSR literature, this paper examines and contributes to the embryonic but emerging debate about the instrumental and political implications of CSR. The evidence presented and discussed here reveals the extent to which, and the reasons why, MNEs engage in complex legitimacy-seeking relationships with Sri Lankan institutions

    Dietary zinc supplementation of 3xTg-AD mice increases BDNF levels and prevents cognitive deficits as well as mitochondrial dysfunction

    Get PDF
    The overall effect of brain zinc (Zn2+) in the progression and development of Alzheimer's disease (AD) is still not completely understood. Although an excess of Zn2+ can exacerbate the pathological features of AD, a deficit of Zn2+ intake has also been shown to increase the volume of amyloid plaques in AD transgenic mice. In this study, we investigated the effect of dietary Zn2+ supplementation (30 p.p.m.) in a transgenic mouse model of AD, the 3xTg-AD, that expresses both β amyloid (Aβ)- and tau-dependent pathology. We found that Zn2+ supplementation greatly delays hippocampal-dependent memory deficits and strongly reduces both Aβ and tau pathology in the hippocampus. We also evaluated signs of mitochondrial dysfunction and found that Zn2+ supplementation prevents the age-dependent respiratory deficits we observed in untreated 3xTg-AD mice. Finally, we found that Zn2+ supplementation greatly increases the levels of brain-derived neurotrophic factor (BDNF) of treated 3xTg-AD mice. In summary, our data support the idea that controlling the brain Zn2+ homeostasis may be beneficial in the treatment of AD
    corecore