1,517 research outputs found

    Behavior of hybrid FRP-concrete-steel tubular columns : experimental and theoretical studies

    Get PDF
    2006-2007 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe

    Joint actions with large partners and small-firm ambidexterity in asymmetric alliances:The mediating role of relational identification

    Get PDF
    This study investigates the role of relational identification in the relation between joint actions and small-firm ambidexterity in asymmetric alliances. Using survey data on Chinese high-technology firms, we find that joint problem-solving and joint sensemaking are both positively associated with small firm's relational identification. We also find a positive relationship between small firm's relational identification and knowledge exploration and exploitation. More importantly, we show that relational identification mediates the relationships between joint actions (i.e., joint problem-solving and joint sensemaking) and small-firm ambidexterity, except for the relationship between joint sensemaking and small-firm knowledge exploitation. This study advances our understanding of the association between joint actions and ambidexterity by providing a social identification explanation

    Insufficient activity of MAPK pathway is a key monitor of Kidney-Yang Deficiency Syndrome.

    Get PDF
    OBJECTIVE: To explore the genetic characteristics and molecular regulator of Kidney-Yang Deficiency Syndrome (KDS). DESIGN: A typical KDS family was collected using a questionnaire of cold feeling and a 40-item scoring table of KDS based on Traditional Chinese Medicine (TCM), by single-blind method repeated annually over three years. Their transcriptomes were assayed by microarray and validated by RT-PCR and ELISA. Simultaneously, 10 healthy volunteers were recruited as controls and the same protocols were performed. RESULTS: This typical KDS family has 35 members, of whom 11 were evaluated as having severe KDS and 6 as having common KDS. Results of the cDNA microarray revealed that there were 420 genes/expressed sequence tags differentially expressed in KDS transcriptomes, indicating a global functional impairment in the mass-energy-information carrying network of KDS patients, involving energy metabolism, signal transduction, development, cell cycle, and immunity. Pathway analysis by gene set enrichment assay (GSEA) and other tools demonstrated that mitogenic activated protein kinase (MAPK) is among the most insufficiently activated pathways, while the oxidative phosphorylation and glycolysis/gluconeogenesis pathways, the two main pathways relevant to ATP synthesis, were among the most excessively activated pathways in KDS patients. Results of RT-PCR and ELISA confirmed the status of insufficient activity of the MAPK pathway. CONCLUSION: KDS patients undergo overall attenuated functions in the mass-energy-information carrying network. The marked low level of energy output in KDS may be primarily attributed to the insufficient activity of the MAPK pathway, which may be a key monitor for the abnormal energy metabolism and other impaired activities in KDS.published_or_final_versio

    CLEC5A-mediated enhancement of the inflammatory response in myeloid cells contributes to influenza virus pathogenicity in vivo

    Get PDF
    Human infections with influenza viruses exhibit mild to severe clinical outcomes as a result of complex virus-host interactions. Induction of inflammatory mediators via pattern recognition receptors may dictate subsequent host responses for pathogen clearance and tissue damage. We identified that human C-type lectin domain family 5 member A (CLEC5A) interacts with the hemagglutinin protein of influenza viruses expressed on lentiviral pseudoparticles through lectin screening. Silencing CLEC5A gene expression, blocking influenza-CLEC5A interactions with anti-CLEC5A antibodies, or dampening CLEC5A-mediated signaling using a spleen tyrosine kinase inhibitor consistently reduced the levels of proinflammatory cytokines produced by human macrophages without affecting the replication of influenza A viruses of different subtypes. Infection of bone marrow-derived macrophages from CLEC5A-deficient mice showed reduced levels of tumor necrosis factor alpha (TNF-α) and IP-10 but elevated alpha interferon (IFN-α) compared to those of wild-type mice. The heightened type I IFN response in the macrophages of CLEC5A-deficient mice was associated with upregulated TLR3 mRNA after treatment with double-stranded RNA. Upon lethal challenges with a recombinant H5N1 virus, CLEC5A-deficient mice showed reduced levels of proinflammatory cytokines, decreased immune cell infiltration in the lungs, and improved survival compared to the wild-type mice, despite comparable viral loads noted throughout the course of infection. The survival difference was more prominent at a lower dose of inoculum. Our results suggest that CLEC5A-mediated enhancement of the inflammatory response in myeloid cells contributes to influenza pathogenicity in vivo and may be considered a therapeutic target in combination with effective antivirals. Well-orchestrated host responses together with effective viral clearance are critical for optimal clinical outcome after influenza infections.published_or_final_versio

    Managing healthcare budgets in times of austerity: the role of program budgeting and marginal analysis

    Get PDF
    Given limited resources, priority setting or choice making will remain a reality at all levels of publicly funded healthcare across countries for many years to come. The pressures may well be even more acute as the impact of the economic crisis of 2008 continues to play out but, even as economies begin to turn around, resources within healthcare will be limited, thus some form of rationing will be required. Over the last few decades, research on healthcare priority setting has focused on methods of implementation as well as on the development of approaches related to fairness and legitimacy and on more technical aspects of decision making including the use of multi-criteria decision analysis. Recently, research has led to better understanding of evaluating priority setting activity including defining ‘success’ and articulating key elements for high performance. This body of research, however, often goes untapped by those charged with making challenging decisions and as such, in line with prevailing public sector incentives, decisions are often reliant on historical allocation patterns and/or political negotiation. These archaic and ineffective approaches not only lead to poor decisions in terms of value for money but further do not reflect basic ethical conditions that can lead to fairness in the decision-making process. The purpose of this paper is to outline a comprehensive approach to priority setting and resource allocation that has been used in different contexts across countries. This will provide decision makers with a single point of access for a basic understanding of relevant tools when faced with having to make difficult decisions about what healthcare services to fund and what not to fund. The paper also addresses several key issues related to priority setting including how health technology assessments can be used, how performance can be improved at a practical level, and what ongoing resource management practice should look like. In terms of future research, one of the most important areas of priority setting that needs further attention is how best to engage public members

    Development of a multi-locus sequence typing scheme for Laribacter hongkongensis, a novel bacterium associated with freshwater fish-borne gastroenteritis and traveler's diarrhea

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Laribacter hongkongensis is a newly discovered, facultative anaerobic, Gram-negative, motile, sea gull-shaped rod associated with freshwater fish borne gastroenteritis and traveler's diarrhea. A highly reproducible and discriminative typing system is essential for better understanding of the epidemiology of <it>L. hongkongensis</it>. In this study, a multilocus sequence typing (MLST) system was developed for <it>L. hongkongensis</it>. The system was used to characterize 146 <it>L. hongkongensis </it>isolates, including 39 from humans and 107 from fish.</p> <p>Results</p> <p>Fragments (362 to 504 bp) of seven housekeeping genes were amplified and sequenced. Among the 3068 bp of the seven loci, 332 polymorphic sites were observed. The median number of alleles at each locus was 34 [range 22 (<it>ilvC</it>) to 45 (<it>thiC</it>)]. All seven genes showed very low <it>d</it><sub><it>n</it></sub>/<it>d</it><sub><it>s </it></sub>ratios of < 0.04, indicating that no strong positive selective pressure is present. A total of 97 different sequence types (STs) were assigned to the 146 isolates, with 80 STs identified only once. The overall discriminatory power was 0.9861. eBURST grouped the isolates into 12 lineages, with six groups containing only isolates from fish and three groups only isolates from humans. Standardized index of association (<it>I</it><sup><it>S</it></sup><sub><it>A</it></sub>) measurement showed significant linkage disequilibrium in isolates from both humans and fish. The <it>I</it><sup><it>S</it></sup><sub><it>A </it></sub>for the isolates from humans and fish were 0.270 and 0.636, indicating the isolates from fish were more clonal than the isolates from humans. Only one interconnected network (<it>acnB</it>) was detected in the split graphs. The P-value (P = 0) of sum of the squares of condensed fragments in Sawyer's test showed evidence of intragenic recombination in the <it>rho, acnB </it>and <it>thiC </it>loci, but the P-value (P = 1) of maximum condensed fragment in these gene loci did not show evidence of intragenic recombination. Congruence analysis showed that all the pairwise comparisons of the 7 MLST loci were incongruent, indicating that recombination played a substantial role in the evolution of <it>L. hongkongensis</it>. A website for <it>L. hongkongensis </it>MLST was set up and can be accessed at <url>http://mlstdb.hku.hk:14206/MLST_index.html</url>.</p> <p>Conclusion</p> <p>A highly reproducible and discriminative MLST system was developed for <it>L. hongkongensis</it>.</p

    Enrichment analysis of Alu elements with different spatial chromatin proximity in the human genome

    Get PDF
    Transposable elements (TEs) have no longer been totally considered as “junk DNA” for quite a time since the continual discoveries of their multifunctional roles in eukaryote genomes. As one of the most important and abundant TEs that still active in human genome, Alu, a SINE family, has demonstrated its indispensable regulatory functions at sequence level, but its spatial roles are still unclear. Technologies based on 3C(chromosomeconformation capture) have revealed the mysterious three-dimensional structure of chromatin, and make it possible to study the distal chromatin interaction in the genome. To find the role TE playing in distal regulation in human genome, we compiled the new released Hi-C data, TE annotation, histone marker annotations, and the genome-wide methylation data to operate correlation analysis, and found that the density of Alu elements showed a strong positive correlation with the level of chromatin interactions (hESC: r=0.9, P<2.2×1016; IMR90 fibroblasts: r = 0.94, P < 2.2 × 1016) and also have a significant positive correlation withsomeremote functional DNA elements like enhancers and promoters (Enhancer: hESC: r=0.997, P=2.3×10−4; IMR90: r=0.934, P=2×10−2; Promoter: hESC: r = 0.995, P = 3.8 × 10−4; IMR90: r = 0.996, P = 3.2 × 10−4). Further investigation involving GC content and methylation status showed the GC content of Alu covered sequences shared a similar pattern with that of the overall sequence, suggesting that Alu elements also function as the GC nucleotide and CpG site provider. In all, our results suggest that the Alu elements may act as an alternative parameter to evaluate the Hi-C data, which is confirmed by the correlation analysis of Alu elements and histone markers. Moreover, the GC-rich Alu sequence can bring high GC content and methylation flexibility to the regions with more distal chromatin contact, regulating the transcription of tissue-specific genes

    Porphyromonas gingivalis suppresses adaptive immunity in periodontitis, atherosclerosis and Alzheimer’s disease

    Get PDF
    Porphyromonas gingivalis, a keystone pathogen in chronic periodontitis, has been found to associate with remote body organ inflammatory pathologies including atherosclerosis and Alzheimer’s disease (AD). Although P. gingivalis has a plethora of virulence factors, much of its pathogenicity is surprisingly related to the overall immunosuppression of the host. This review focuses on P. gingivalis aiding suppression of the host’s adaptive immune system involving manipulation of cellular immunological responses specifically T- and B-cells in periodontitis and related conditions. In periodontitis this bacterium inhibits the synthesis of IL-2 and increases humoral responses. This reduces inflammatory responses related to T- and B-cell activation, and subsequent IFN-ɤ secretion by a subset of T cells. The T cells further suppresses upregulation of programmed cell death-1 (PD-1)-receptor on CD+-cells and its ligand PD-L1 on CD11b+- subset of T-cells. IL-2 down-regulates immune response-regulated genes, induces a cytokine pattern in which the Th17 lineage is favored thereby modulating the Th17/ T-regulatory cell (Treg) imbalance. The suppression of IFN-ɤ stimulated release of interferon-inducible protein-10 (IP-10) chemokine ligands [ITAC (CXCL11) and Mig (CXCL9)] by P. gingivalis capsular serotypes, triggers distinct T-cell responses, and contributes to local immune evasion by release of its outer membrane vesicles. In atherosclerosis P. gingivalis reduces Tregs and transforming growth factor beta-1 (TGF-1) and causes imbalance in the Th17 lineage of the Treg population. In Alzheimer’s disease P. gingivalis may affect the blood-brain barrier permeability, and inhibit local IFN-ɤ response by preventing entry of immune cells into the brain. The scarcity of adaptive immune cells in Alzheimer’s disease neuropathology implies P. gingivalis infection of the brain likely causes impaired clearance of insoluble amyloid and induces immunosuppression. By the effective manipulation of the armory of adaptive immune suppression through a plethora of virulence factors P. gingivalis may act as a keystone organism in periodontitis and in related systemic diseases and other remote body inflammatory pathologies
    corecore