965 research outputs found

    Progenitor cells of the rod-free area centralis originate in the anterior dorsal optic vesicle

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nervous system development is dependent on early regional specification to create functionally distinct tissues within an initially undifferentiated zone. Within the retina, photoreceptors are topographically organized with rod free area centrales faithfully generated at the centre of gaze. How does the developing eye regulate this placement? Conventional wisdom indicates that the distal tip of the growing optic vesicle (OV) gives rise to the area centralis/fovea. Ectopic expression and ablation studies do not fully support this view, creating a controversy as to the origin of this region. In this study, the lineage of cells in the chicken OV was traced using DiI. The location of labelled cells was mapped onto the retina in relation to the rod-free zone at embryonic (E) 7 and E17.5. The ability to regenerate a rod free area after OV ablation was determined in conjunction with lineage tracing.</p> <p>Results</p> <p>Anterior OV gave rise to cells in nasal retina and posterior OV became temporal retina. The OV distal tip gave rise to cells above the optic nerve head. A dorsal and anterior region of the OV correlated with cells in the developing rod free area centralis. Only ablations including the dorsal anterior region gave rise to a retina lacking a rod free zone. DiI application after ablation indicated that cells movements were greater along the anterior/posterior axis compared with the dorsal/ventral axis.</p> <p>Conclusion</p> <p>Our data support the idea that the chicken rod free area centralis originates from cells located near, but not at the distal tip of the developing OV. Therefore, the hypothesis that the area centralis is derived from cells at the distal tip of the OV is not supported; rather, a region anterior and dorsal to the distal tip gives rise to the rod free region. When compared with other studies of retinal development, our results are supported on molecular, morphological and functional levels. Our data will lead to a better understanding of the mechanisms underlying the topographic organization of the retina, the origin of the rod free zone, and the general issue of compartmentalization of neural tissue before any indication of morphological differentiation.</p

    Neonatal umbilical cord blood transplantation halts skeletal disease progression in the murine model of MPS-I

    Get PDF
    Umbilical cord blood (UCB) is a promising source of stem cells to use in early haematopoietic stem cell transplantation (HSCT) approaches for several genetic diseases that can be diagnosed at birth. Mucopolysaccharidosis type I (MPS-I) is a progressive multi-system disorder caused by deficiency of lysosomal enzyme α-L-iduronidase, and patients treated with allogeneic HSCT at the onset have improved outcome, suggesting to administer such therapy as early as possible. Given that the best characterized MPS-I murine model is an immunocompetent mouse, we here developed a transplantation system based on murine UCB. With the final aim of testing the therapeutic efficacy of UCB in MPS-I mice transplanted at birth, we first defined the features of murine UCB cells and demonstrated that they are capable of multi-lineage haematopoietic repopulation of myeloablated adult mice similarly to bone marrow cells. We then assessed the effectiveness of murine UCB cells transplantation in busulfan-conditioned newborn MPS-I mice. Twenty weeks after treatment, iduronidase activity was increased in visceral organs of MPS-I animals, glycosaminoglycans storage was reduced, and skeletal phenotype was ameliorated. This study explores a potential therapy for MPS-I at a very early stage in life and represents a novel model to test UCB-based transplantation approaches for various diseases

    Evolution records a Mx tape for anti-viral immunity

    Get PDF
    Viruses impose diverse and dynamic challenges on host defenses. Diversifying selection of codons and gene copy number variation are two hallmarks of genetic innovation in antiviral genes engaged in host-virus genetic conflicts. The myxovirus resistance (Mx) genes encode interferon-inducible GTPases that constitute a major arm of the cell-autonomous defense against viral infection. Unlike the broad antiviral activity of MxA, primate MxB was recently shown to specifically inhibit lentiviruses including HIV-1. We carried out detailed evolutionary analyses to investigate whether genetic conflict with lentiviruses has shaped MxB evolution in primates. We found strong evidence for diversifying selection in the MxB N-terminal tail, which contains molecular determinants of MxB anti-lentivirus specificity. However, we found no overlap between previously-mapped residues that dictate lentiviral restriction and those that have evolved under diversifying selection. Instead, our findings are consistent with MxB having a long-standing and important role in the interferon response to viral infection against a broader range of pathogens than is currently appreciated. Despite its critical role in host innate immunity, we also uncovered multiple functional losses of MxB during mammalian evolution, either by pseudogenization or by gene conversion from MxA genes. Thus, although the majority of mammalian genomes encode two Mx genes, this apparent stasis masks the dramatic effects that recombination and diversifying selection have played in shaping the evolutionary history of Mx genes. Discrepancies between our study and previous publications highlight the need to account for recombination in analyses of positive selection, as well as the importance of using sequence datasets with appropriate depth of divergence. Our study also illustrates that evolutionary analyses of antiviral gene families are critical towards understanding molecular principles that govern host-virus interactions and species-specific susceptibility to viral infection

    Health Care Support Issues for Internationally Adopted Children: A Qualitative Approach to the Needs and Expectations of Families

    Get PDF
    International audienceBACKGROUND: Families of internationally adopted children may face specific problems with which general practitioners (GPs) may not be familiar. The aim of the study was to explore problems faced by families before, during and after the arrival of their internationally adopted child and to assess the usefulness of a specific medical structure for internationally adopted children, which could be a resource for the GP. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a qualitative study using individual semistructured guided conversations and interviewed 21 families that had adopted a total of 26 children internationally in the Puy de Dome department, France, in 2003. Quantitative data were used to describe the pathologies diagnosed and the investigations performed.Our study showed that the history of these families, from the start of the adoption project to its achievement, is complex and warrants careful analysis. Health-care providers should not only consider the medical aspects of adoption, but should also be interested in the histories of these families, which may play a role in the forming of attachments between the adoptee and their adoptive parents and prevent further trouble during the development of the child. We also showed that adoptive parents have similar fears or transient difficulties that may be resolved quickly by listening and reassurance. Most such families would support the existence of a specific medical structure for internationally adopted children, which could be a resource for the general practitioner. However, the health-care providers interviewed were divided on the subject and expressed their fear that a special consultation could be stigmatizing to children and families. CONCLUSIONS/SIGNIFICANCE: A specific consultation with well-trained and experienced practitioners acting in close collaboration with GPs and paediatricians may be of help in better understanding and supporting adopted children and their families

    Use of radiolabelled choline as a pharmacodynamic marker for the signal transduction inhibitor geldanamycin

    Get PDF
    There is an urgent need to develop non-invasive pharmacodynamic endpoints for the evaluation of new molecular therapeutics that inhibit signal transduction. We hypothesised that, when labelled appropriately, changes in choline kinetics could be used to assess geldanamycin pharmacodynamics, which involves inhibition of the HSP90 molecular chaperone→Raf1→Mitogenic Extracellular Kinase→Extracellular Signal-Regulated Kinase 1 and 2 signal transduction pathway. Towards identifying a potential pharmacodynamic marker response, we have studied radiolabelled choline metabolism in HT29 human colon carcinoma cells following treatment with geldanamycin. We studied the effects of geldanamycin, on net cellular accumulation of (methyl-14C)choline and (methyl-14C)phosphocholine production. In parallel experiments, the effects of geldanamycin on extracellular signal-regulated kinase 1 and 2 phosphorylation and cell viability were also assessed. Additional validation studies were carried out with the mitogenic extracellular kinase inhibitor U0126 as a positive control; a cyclin-dependent kinase-2 inhibitor roscovitine and the phosphatidylinositol 3-kinase inhibitor LY294002 as negative controls. Hemicholinium-3, an inhibitor of choline transport and choline kinase activity was included as an additional control. In exponentially growing HT29 cells, geldanamycin inhibited extracellular signal-regulated kinase 1 and 2 phosphorylation in a concentration- and time-dependent manner. These changes were associated with a reduction in (methyl-14C)choline uptake, (methyl-14C) phosphocholine production and cell viability. Brief exposure to U0126, suppressed phosphocholine production to the same extent as Hemicholinium-3. In contrast to geldanamycin and U0126, which act upstream of extracellular signal-regulated kinase 1 and 2, roscovitine and LY294002 failed to suppress phosphocholine production. Our results suggest that when labelled with carbon-11 isotope, (methyl-11C)choline may be a useful pharmacodynamic marker for the non-invasive evaluation of geldanamycin analogues

    Проблемы увеличения продуктивности АПК в Украине и пути повышения его потенциала

    Get PDF
    Целью статьи является изучение причин снижения показателей продуктивности в агропромышленном комплексе и путей повышения продуктивности сельскохозяйственных культур

    Wnt5a stimulates chemotactic migration and chemokine production in human neutrophils

    Get PDF
    Wnt5a is a ligand that activates the noncanonical Wnt signaling pathways (??-catenin-independent pathways). Human neutrophils expressed several Wnt5a receptors, such as Frizzled 2, 5 and 8. Stimulation of human neutrophils with Wnt5a caused chemotactic migration and the production of two important chemokines, CXCL8 and CCL2. CCL2 production by Wnt5a was mediated by a pertussis toxin-sensitive G-protein-dependent pathway. Wnt5a also stimulated the phosphorylation of three mitogen-activated protein kinases (MAPKs: ERK, p38 MAPK and JNK) and Akt. Inhibition of ERK, p38 MAPK or JNK by specific inhibitors induced a dramatic reduction in Wnt5a-induced CCL2 production. Supernatant collected from lipopolysaccharide-stimulated macrophages induced neutrophil chemotaxis, which was significantly inhibited by anti-Wnt5a antibody. Our results suggested that Wnt5a may contribute to neutrophil recruitment, mediating the inflammation response.open4

    Immunological Sex Differences in Socially Promiscuous African Ground Squirrels

    Get PDF
    Differences in how males and females respond to foreign antigens are common across taxa. Such sexual differences in the immune system are predicted to be greater in species with high promiscuity and sociality as these factors increase the likelihood of disease transmission. Intense sperm competition is thought to further this sexual dichotomy as increased investment in spermatogenesis likely incurs additional immunological costs. Xerus inauris, a ground squirrel found throughout southern Africa, is extremely social and promiscuous with one of the highest male reproductive investments among rodents. These life-history attributes suggest males and females should demonstrate a large dichotomy in immunity. Contrary to our prediction, we found no difference in spleen mass between the sexes. However, we did find significant biases in leukocyte types and red blood cell counts, possibly reflecting responses to parasite types. Among males, we predicted greater investments in spermatogenesis would result in reduced immunological investments. We found a negative association between testes and spleen size and a positive relationship between testes and number of lice suggesting trade-offs in reproductive investment possibly due to the costs associated with spermatogenesis and immunity. We suggest when measuring sexual differences in immunity it is important to consider the effects of reproductive pressures, parasite types, and life history costs

    Preclinical Models for Neuroblastoma: Establishing a Baseline for Treatment

    Get PDF
    Preclinical models of pediatric cancers are essential for testing new chemotherapeutic combinations for clinical trials. The most widely used genetic model for preclinical testing of neuroblastoma is the TH-MYCN mouse. This neuroblastoma-prone mouse recapitulates many of the features of human neuroblastoma. Limitations of this model include the low frequency of bone marrow metastasis, the lack of information on whether the gene expression patterns in this system parallels human neuroblastomas, the relatively slow rate of tumor formation and variability in tumor penetrance on different genetic backgrounds. As an alternative, preclinical studies are frequently performed using human cell lines xenografted into immunocompromised mice, either as flank implant or orthtotopically. Drawbacks of this system include the use of cell lines that have been in culture for years, the inappropriate microenvironment of the flank or difficult, time consuming surgery for orthotopic transplants and the absence of an intact immune system.Here we characterize and optimize both systems to increase their utility for preclinical studies. We show that TH-MYCN mice develop tumors in the paraspinal ganglia, but not in the adrenal, with cellular and gene expression patterns similar to human NB. In addition, we present a new ultrasound guided, minimally invasive orthotopic xenograft method. This injection technique is rapid, provides accurate targeting of the injected cells and leads to efficient engraftment. We also demonstrate that tumors can be detected, monitored and quantified prior to visualization using ultrasound, MRI and bioluminescence. Finally we develop and test a "standard of care" chemotherapy regimen. This protocol, which is based on current treatments for neuroblastoma, provides a baseline for comparison of new therapeutic agents.The studies suggest that use of both the TH-NMYC model of neuroblastoma and the orthotopic xenograft model provide the optimal combination for testing new chemotherapies for this devastating childhood cancer
    corecore