30 research outputs found
Contrasting Population Structures of Two Vectors of African Trypanosomoses in Burkina Faso: Consequences for Control
Tsetse flies are insects that transmit trypanosomes to humans (sleeping sickness) and animals (nagana). Controlling these vectors is a very efficient way to control these diseases. In Burkina Faso, a tsetse eradication campaign is presently targeting the northern part of the Mouhoun River Basin. To attain this objective, the approach has to be area-wide, i.e. the control effort targets an entire pest population within a circumscribed area. To assess the level of this isolation, we studied the genetic structure of Glossina palpalis gambiensis and Glossina tachinoides populations in the target area and in the adjacent river basins of the Comoé, the Niger and the Sissili River Basins. Our results suggest an absence of strong genetic isolation of the target populations. We therefore recommend establishing permanent buffer zones between the Mouhoun and the other river basin(s) to prevent reinvasion. This kind of study may be extended to other areas on other tsetse species
Human malarial disease: a consequence of inflammatory cytokine release
Malaria causes an acute systemic human disease that bears many similarities, both clinically and mechanistically, to those caused by bacteria, rickettsia, and viruses. Over the past few decades, a literature has emerged that argues for most of the pathology seen in all of these infectious diseases being explained by activation of the inflammatory system, with the balance between the pro and anti-inflammatory cytokines being tipped towards the onset of systemic inflammation. Although not often expressed in energy terms, there is, when reduced to biochemical essentials, wide agreement that infection with falciparum malaria is often fatal because mitochondria are unable to generate enough ATP to maintain normal cellular function. Most, however, would contend that this largely occurs because sequestered parasitized red cells prevent sufficient oxygen getting to where it is needed. This review considers the evidence that an equally or more important way ATP deficency arises in malaria, as well as these other infectious diseases, is an inability of mitochondria, through the effects of inflammatory cytokines on their function, to utilise available oxygen. This activity of these cytokines, plus their capacity to control the pathways through which oxygen supply to mitochondria are restricted (particularly through directing sequestration and driving anaemia), combine to make falciparum malaria primarily an inflammatory cytokine-driven disease
Pathogenesis of Behçet’s disease: autoinflammatory features and beyond
Beh double dagger et's disease (BD) is an inflammatory disorder of unknown aetiology characterised by recurrent attacks affecting the mucocutaneous tissues, eyes, joints, blood vessels, brain and gastrointestinal tract. It is a multifactorial disease classified as a variable vessel vasculitis, and several environmental triggers may induce inflammatory episodes in genetically susceptible individuals. BD has several autoinflammatory features including recurrent self-limited clinical manifestations overlapping with monogenic autoinflammatory disorders, significant host predisposition and abnormally increased inflammatory response, with a robust innate component. Human leukocyte antigen (HLA)-B*51 is the strongest susceptibility factor described so far affecting the disease risk and typical phenotype. Non-HLA genetic associations such as endoplasmic reticulum aminopeptidase 1 (ERAP1), interleukin 23 receptor (IL23R) and IL10 variations suggest that BD shares susceptibility genes and inflammatory pathways with spondyloarthritis. Although genomewide association studies revealed an increased risk associated with recessively inherited ERAP1 variations in HLA-B*51 positive patients, it is not clear yet whether certain peptide-HLA allele combinations result in an adaptive response by a self-antigen-directed cytotoxic response or an innate response by modulating an NK cell activity or causing an unfolded protein response. Understanding of major histocompatibility complex (MHC) Class I-driven inflammatory response is expected to provide insights for the development of better treatment and remission-induction options in BD as well as in ankylosing spondylitis (AS) and psoriasis