4 research outputs found

    Molecular Epidemiology of Endemic Human T-Lymphotropic Virus Type 1 in a Rural Community in Guinea-Bissau

    Get PDF
    Human T-Lymphotropic Virus type 1 (HTLV-1) affects millions of people worldwide. It is very similar to Simian T-Lymphotropic Virus, a virus that circulates in monkeys. HTLV-1 causes a lethal form of leukemia (Adult T-cell Leukemia) and a debilitating neurological syndrome (HTLV-associated myelopathy/tropical spastic paraparesis) in approximately 5% of infected people. Based on sequence variation, HTLV-1 can be divided into 7 subtypes (1a–1g) with the Cosmopolitan subtype 1a further subdivided into subgroups (A–E). We examined HTLV-1 diversity in a rural area in Guinea-Bissau, a country in West Africa with a high HTLV-1 prevalence (5%). We found that most viruses belong to the Cosmopolitan subtype 1a, subgroup D, but 2 viruses belonged to subtype 1g. This subtype had thus far only been found in monkey hunters in Cameroon, who were probably recently infected by monkeys. Our findings indicate that this subtype has spread beyond Central Africa. An important, unresolved question is whether persons with this subtype were infected by monkeys or through human-to-human transmission

    Protective properties of non-nucleoside reverse transcriptase inhibitor (MC1220) incorporated into liposome against intravaginal challenge of Rhesus Macaques with RT-SHIV

    No full text
    In the absence of an effective vaccine against HIV, it is urgent to develop an effective alternative such as a microbicide. Single and repeated applications of MC1220 microbicide were evaluated in macaques. First, animals were given a single application of 0.5% or 1.5% MC1220-containing liposomal gel. A second group were treated with 0.5% MC1220 once a day for 4 days. The control groups were treated by liposomal gel alone. Thirty minutes after the last application, animals were challenged with RT-SHIV. In the first protocol, 2 of 4 animals treated by 0.5% of the MC1220 and 2 of 5 treated by 1.5% were protected. In the second protocol, 3 of 5 treated animals were protected and 5 of 5 controls were infected. The RNA viral load at necropsy was significantly lower (p=0.05) in treated-infected animals than in controls. In both protocols, the number of CD4+ T cells was lower at viremia peak in infected than in protected animals

    Molecular epidemiology, genetic variability and evolution of HTLV-1 with special emphasis on African genotypes

    No full text
    corecore