12 research outputs found

    Ultra-high resolution snapshots of three multi-decadal periods in an Antarctic ice core

    No full text
    We offer the first sub-seasonal view of glacial age archives from the Siple Dome-A (SDMA) ice core using the ultra-high resolution capabilities of a newly developed laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS; 121 μm sampling resolution) system capable of conducting multi-element glaciochemical analysis. Our ultra-high resolution data demonstrates that: (1) the SDMA ice core record can be annually dated based on seasonality in chemical inputs at a depth not previously possible using previous glaciochemical sampling methods, (2) winter accumulation at the SD site was greater than summer accumulation during the three late glacial periods selected (∼15.3, 17.3, 21.4 Ka ago) in this study and (3) resulting annual layer thicknesses results show greater variability than the current SD ice core depth/age model (Brook and others, 2005), possibly due to depositional effects such as wind scouring and/or decadal variability in snow accumulation that is not captured by the resolution of the current depth/age model

    Roosevelt Island Climate Evolution (RICE) ice core isotope record

    No full text
    High-resolution, well-dated climate archives provide an opportunity to investigate the dynamic interactions of climate patterns relevant for future projections. Here, we present data from a new, annually-dated ice core record from the eastern Ross Sea. Comparison of the Roosevelt Island Climate Evolution (RICE) ice core records with climate reanalysis data for the 1979-2012 calibration period shows that RICE records reliably capture temperature and snow precipitation variability of the region. RICE is compared with data from West Antarctica (West Antarctic Ice Sheet Divide Ice Core) and the western (Talos Dome) and eastern (Siple Dome) Ross Sea. For most of the past 2,700 years, the eastern Ross Sea was warming with perhaps increased snow accumulation and decreased sea ice extent. However, West Antarctica cooled whereas the western Ross Sea showed no significant temperature trend. From the 17th Century onwards, this relationship changes. All three regions now show signs of warming, with snow accumulation declining in West Antarctica and the eastern Ross Sea, but increasing in the western Ross Sea. Analysis of decadal to centennial-scale climate variability superimposed on the longer term trend reveal that periods characterised by opposing temperature trends between the Eastern and Western Ross Sea have occurred since the 3rd Century but are masked by longer-term trends. This pattern here is referred to as the Ross Sea Dipole, caused by a sensitive response of the region to dynamic interactions of the Southern Annual Mode and tropical forcings
    corecore