31 research outputs found
Identification of miRNA from Porphyra yezoensis by High-Throughput Sequencing and Bioinformatics Analysis
BACKGROUND: miRNAs are a class of non-coding, small RNAs that are approximately 22 nucleotides long and play important roles in the translational level regulation of gene expression by either directly binding or cleaving target mRNAs. The red alga, Porphyra yezoensis is one of the most important marine economic crops worldwide. To date, only a few miRNAs have been identified in green unicellar alga and there is no report about Porphyra miRNAs. METHODOLOGY/PRINCIPAL FINDINGS: To identify miRNAs in Porphyra yezoensis, a small RNA library was constructed. Solexa technology was used to perform high throughput sequencing of the library and subsequent bioinformatics analysis to identify novel miRNAs. Specifically, 180,557,942 reads produced 13,324 unique miRNAs representing 224 conserved miRNA families that have been identified in other plants species. In addition, seven novel putative miRNAs were predicted from a limited number of ESTs. The potential targets of these putative miRNAs were also predicted based on sequence homology search. CONCLUSIONS/SIGNIFICANCE: This study provides a first large scale cloning and characterization of Porphyra miRNAs and their potential targets. These miRNAs belong to 224 conserved miRNA families and 7 miRNAs are novel in Porphyra. These miRNAs add to the growing database of new miRNA and lay the foundation for further understanding of miRNA function in the regulation of Porphyra yezoensis development
Differing Requirements for RAD51 and DMC1 in Meiotic Pairing of Centromeres and Chromosome Arms in Arabidopsis thaliana
During meiosis homologous chromosomes pair, recombine, and synapse, thus ensuring accurate chromosome segregation and the halving of ploidy necessary for gametogenesis. The processes permitting a chromosome to pair only with its homologue are not fully understood, but successful pairing of homologous chromosomes is tightly linked to recombination. In Arabidopsis thaliana, meiotic prophase of rad51, xrcc3, and rad51C mutants appears normal up to the zygotene/pachytene stage, after which the genome fragments, leading to sterility. To better understand the relationship between recombination and chromosome pairing, we have analysed meiotic chromosome pairing in these and in dmc1 mutant lines. Our data show a differing requirement for these proteins in pairing of centromeric regions and chromosome arms. No homologous pairing of mid-arm or distal regions was observed in rad51, xrcc3, and rad51C mutants. However, homologous centromeres do pair in these mutants and we show that this does depend upon recombination, principally on DMC1. This centromere pairing extends well beyond the heterochromatic centromere region and, surprisingly, does not require XRCC3 and RAD51C. In addition to clarifying and bringing the roles of centromeres in meiotic synapsis to the fore, this analysis thus separates the roles in meiotic synapsis of DMC1 and RAD51 and the meiotic RAD51 paralogs, XRCC3 and RAD51C, with respect to different chromosome domains
Ape Conservation Physiology: Fecal Glucocorticoid Responses in Wild Pongo pygmaeus morio following Human Visitation
Nature-based tourism can generate important revenue to support conservation of biodiversity. However, constant exposure to tourists and subsequent chronic activation of stress responses can produce pathological effects, including impaired cognition, growth, reproduction, and immunity in the same animals we are interested in protecting. Utilizing fecal samples (N = 53) from 2 wild habituated orangutans (Pongo pygmaeus morio) (in addition to 26 fecal samples from 4 wild unhabituated orangutans) in the Lower Kinabatangan Wildlife Sanctuary of Sabah, Malaysian Borneo, we predicted that i) fecal glucocorticoid metabolite concentrations would be elevated on the day after tourist visitation (indicative of normal stress response to exposure to tourists on the previous day) compared to samples taken before or during tourist visitation in wild, habituated orangutans, and ii) that samples collected from habituated animals would have lower fecal glucocorticoid metabolites than unhabituated animals not used for tourism. Among the habituated animals used for tourism, fecal glucocorticoid metabolite levels were significantly elevated in samples collected the day after tourist visitation (indicative of elevated cortisol production on the previous day during tourist visitation). Fecal glucocorticoid metabolite levels were also lower in the habituated animals compared to their age-matched unhabituated counterparts. We conclude that the habituated animals used for this singular ecotourism project are not chronically stressed, unlike other species/populations with documented permanent alterations in stress responses. Animal temperament, species, the presence of coping/escape mechanisms, social confounders, and variation in amount of tourism may explain differences among previous experiments. Acute alterations in glucocorticoid measures in wildlife exposed to tourism must be interpreted conservatively. While permanently altered stress responses can be detrimental, preliminary results in these wild habituated orangutans suggest that low levels of predictable disturbance can likely result in low physiological impact on these animals
Regulation of High-Temperature Stress Response by Small RNAs
Temperature extremes constitute one of the most common environmental stresses that adversely affect the growth and development of plants. Transcriptional regulation of temperature stress responses, particularly involving protein-coding gene networks, has been intensively studied in recent years. High-throughput sequencing technologies enabled the detection of a great number of small RNAs that have been found to change during and following temperature stress. The precise molecular action of some of these has been elucidated in detail. In the present chapter, we summarize the current understanding of small RNA-mediated modulation of high- temperature stress-regulatory pathways including basal stress responses, acclimation, and thermo-memory. We gather evidence that suggests that small RNA network changes, involving multiple upregulated and downregulated small RNAs, balance the trade-off between growth/development and stress responses, in order to ensure successful adaptation. We highlight specific characteristics of small RNA-based tem- perature stress regulation in crop plants. Finally, we explore the perspectives of the use of small RNAs in breeding to improve stress tolerance, which may be relevant for agriculture in the near future
Emergence of Fatal PRRSV Variants: Unparalleled Outbreaks of Atypical PRRS in China and Molecular Dissection of the Unique Hallmark
Porcine reproductive and respiratory syndrome (PRRS) is a severe viral disease in pigs, causing great economic losses worldwide each year. The causative agent of the disease, PRRS virus (PRRSV), is a member of the family Arteriviridae. Here we report our investigation of the unparalleled large-scale outbreaks of an originally unknown, but so-called “high fever” disease in China in 2006 with the essence of PRRS, which spread to more than 10 provinces (autonomous cities or regions) and affected over 2,000,000 pigs with about 400,000 fatal cases. Different from the typical PRRS, numerous adult sows were also infected by the “high fever” disease. This atypical PRRS pandemic was initially identified as a hog cholera-like disease manifesting neurological symptoms (e.g., shivering), high fever (40–42°C), erythematous blanching rash, etc. Autopsies combined with immunological analyses clearly showed that multiple organs were infected by highly pathogenic PRRSVs with severe pathological changes observed. Whole-genome analysis of the isolated viruses revealed that these PRRSV isolates are grouped into Type II and are highly homologous to HB-1, a Chinese strain of PRRSV (96.5% nucleotide identity). More importantly, we observed a unique molecular hallmark in these viral isolates, namely a discontinuous deletion of 30 amino acids in nonstructural protein 2 (NSP2). Taken together, this is the first comprehensive report documenting the 2006 epidemic of atypical PRRS outbreak in China and identifying the 30 amino-acid deletion in NSP2, a novel determining factor for virulence which may be implicated in the high pathogenicity of PRRSV, and will stimulate further study by using the infectious cDNA clone technique