55 research outputs found
Effects of air pollution and the introduction of the London Low Emission Zone on the prevalence of respiratory and allergic symptoms in schoolchildren in East London: a sequential cross-sectional study
The adverse effects of traffic-related air pollution on childrenβs respiratory health have been widely reported, but few studies have evaluated the impact of traffic-control policies designed to reduce urban air pollution. We assessed associations between traffic-related air pollutants and respiratory/allergic symptoms amongst 8β9 year-old schoolchildren living within the London Low Emission Zone (LEZ). Information on respiratory/allergic symptoms was obtained using a parent-completed questionnaire and linked to modelled annual air pollutant concentrations based on the residential address of each child, using a multivariable mixed effects logistic regression analysis. Exposure to traffic-related air pollutants was associated with current rhinitis: NOx (OR 1.01, 95% CI 1.00β1.02), NO2 (1.03, 1.00β1.06), PM10 (1.16, 1.04β1.28) and PM2.5 (1.38, 1.08β1.78), all per ΞΌg/m3 of pollutant, but not with other respiratory/allergic symptoms. The LEZ did not reduce ambient air pollution levels, or affect the prevalence of respiratory/allergic symptoms over the period studied. These data confirm the previous association between traffic-related air pollutant exposures and symptoms of current rhinitis. Importantly, the London LEZ has not significantly improved air quality within the city, or the respiratory health of the resident population in its first three years of operation. This highlights the need for more robust measures to reduce traffic emissions
Prevalence and association of asthma and allergic sensitization with dietary factors in schoolchildren: data from the french six cities study
International audienceBackground: The prevalence of asthma and allergy has recently risen among children. This increase in prevalence might be related to various factors, particularly diet. The aim of this study is to assess the prevalence and association of asthma and allergic sensitization with dietary factors in the French Six Cities Study. Methods: Cross-sectional studies were performed among 7432 schoolchildren aged 9-11 years in Bordeaux, Clermont-Ferrand, Creteil, Marseille, Reims, and Strasbourg. Parental questionnaires, based on the International Study on Asthma and Allergies in Childhood (ISAAC), were used to collect information on allergic diseases and potential exposure factors including a food frequency questionnaire to evaluate dietary habits. Skin prick testing to common allergens for allergic sensitization and bronchial hyper-responsiveness (BHR) testing to exercise were performed. Confounders control was performed with multiple logistic regressions. Results: Asthma symptoms, asthma and allergic sensitization were more prevalent in boys than in girls and were more prevalent in the South than in the North of France. After adjustment for confounders, fruit juice intake was associated with a low prevalence of lifetime asthma (ORa [95 % CI]; 0.73 [0.56-0.97]), butter intake was positively associated with atopic wheeze (1.48 [1.07-2.05]) and having lunch at the canteen 1-2 times/week compared to never or occasionally was associated with a lower prevalence of past year wheeze (0.71 [0.52-0.96]), lifetime asthma (0.76 [0.60-0.96]) and allergic sensitization (0.80 [0.67-0.95]). Meat intake was inversely related to past year wheeze among atopic children (0.68 [0.50-0.98]) while fast food consumption and butter intake were associated with an increase prevalence of asthma (2.39 [1.47-3.93] and 1.51 [1.17-2.00] respectively). Fish intake was associated with a lower prevalence of asthma among non-atopic children (0.61 [0.43-0.87]. None of the dietary factors was associated with BHR. Conclusions: Diet is associated with wheeze, asthma and allergic sensitization but not with BHR in children. These results provide further evidence that adherence to a healthy diet including fruits, meat and fish seems to have a protective effect on asthma and allergy in childhood. However, prospective and experimental studies are needed to provide causal evidence concerning the effect of diet on asthma and atopy
Modulation of miRNA Expression by Dietary Polyphenols in apoE Deficient Mice: A New Mechanism of the Action of Polyphenols
Background: Polyphenols are the most abundant antioxidants in the human diet and are widespread constituents of fruits and beverages, such as tea, coffee or wine. Epidemiological, clinical and animal studies support a role of polyphenols in the prevention of various diseases, such as cardiovascular diseases, cancers or neurodegenerative diseases. Recent findings suggest that polyphenols could interact with cellular signaling cascades regulating the activity of transcription factors and consequently affecting the expression of genes. However, the impact of polyphenol on the expression of microRNA, small non-coding RNAs, has not yet been studied. The aim of this study was to investigate the impact of dietary supplementation with polyphenols at nutritional doses on miRNA expression in the livers of apolipoprotein E-deficient mice (apoE(-/-)) jointly with mRNA expression profiling. [br/]
Methodology/Principal Findings: Using microarrays, we measured the global miRNA expression in the livers of wild-type (C57B6/J) mice or apoE(-/-) mice fed diets supplemented with one of nine different polyphenols or a control diet. This analysis revealed that knock-out of the apoE gene induced significant modulation in the expression of miRNA. Moreover, changes in miRNA expression were observed after polyphenol supplementation, and five miRNAs (mmu-miR-291b-5p, mmu-miR-296-5p, mmu-miR-30c-1*, mmu-miR-467b* and mmu-miR-374*) were identified as being commonly modulated by these polyphenols. We also observed that these polyphenols counteracted the modulation of miRNA expression induced by apoE mutation. Pathway analyses on these five miRNA-target genes revealed common pathways, some of which were also identified from a pathway analysis on mRNA profiles. [br/]
Conclusion:This in vivo study demonstrated for the first time that polyphenols at nutritional doses modulate the expression of miRNA in the liver. Even if structurally different, all polyphenols induced a similar miRNA expression profile. Common pathways were identified from both miRNA-target and mRNA analysis, revealing cellular functions that could be regulated by polyphenols at both the miRNA and mRNA level
Nestedness of Ectoparasite-Vertebrate Host Networks
Determining the structure of ectoparasite-host networks will enable disease ecologists to better understand and predict the spread of vector-borne diseases. If these networks have consistent properties, then studying the structure of well-understood networks could lead to extrapolation of these properties to others, including those that support emerging pathogens. Borrowing a quantitative measure of network structure from studies of mutualistic relationships between plants and their pollinators, we analyzed 29 ectoparasite-vertebrate host networksβincluding three derived from molecular bloodmeal analysis of mosquito feeding patternsβusing measures of nestedness to identify non-random interactions among species. We found significant nestedness in ectoparasite-vertebrate host lists for habitats ranging from tropical rainforests to polar environments. These networks showed non-random patterns of nesting, and did not differ significantly from published estimates of nestedness from mutualistic networks. Mutualistic and antagonistic networks appear to be organized similarly, with generalized ectoparasites interacting with hosts that attract many ectoparasites and more specialized ectoparasites usually interacting with these same βgeneralizedβ hosts. This finding has implications for understanding the network dynamics of vector-born pathogens. We suggest that nestedness (rather than random ectoparasite-host associations) can allow rapid transfer of pathogens throughout a network, and expand upon such concepts as the dilution effect, bridge vectors, and host switching in the context of nested ectoparasite-vertebrate host networks
Macrophage Migration Inhibitory Factor Antagonist Blocks the Development of Endometriosis In Vivo
Endometriosis, a disease of reproductive age women, is a major cause of infertility, menstrual disorders and pelvic pain. Little is known about its etiopathology, but chronic pelvic inflammation is a common feature in affected women. Beside symptomatic treatment of endometriosis-associated pain, only two main suboptimal therapeutic approaches (hormonal and invasive surgery) are generally recommended to patients and no specific targeted treatment is available. Our studies led to the detection of a marked increase in the expression of macrophage migration inhibitory factor (MIF) in the eutopic endometrium, the peripheral blood and the peritoneal fluid of women with endometriosis, and in early, vascularized and active endometriotic lesions. Herein, we developed a treatment model of endometriosis, where human endometrial tissue was first allowed to implant into the peritoneal cavity of nude mice, to assess in vivo the effect of a specific antagonist of MIF (ISO-1) on the progression of endometriosis and evaluate its efficacy as a potential therapeutic tool. Administration of ISO-1 led to a significant decline of the number, size and in situ dissemination of endometriotic lesions. We further showed that ISO-1 may act by significantly inhibiting cell adhesion, tissue remodeling, angiogenesis and inflammation as well as by altering the balance of pro- and anti-apoptotic factors. Actually, mice treatment with ISO-1 significantly reduced the expression of cell adhesion receptors Ξ±v and Γ3 integrins (P<0.05), matrix metalloproteinases (MMP) 2 and 9 (P<0.05), vascular endothelial cell growth factor (VEGF) (P<0.01), interleukin 8 (IL8) (P<0.05), cyclooxygenease (COX)2 (P<0.001) and the anti-apoptotic protein Bcl2 (P<0.01), but significantly induced the expression of Bax (P<0.05), a potent pro-apoptotic protein. These data provide evidence that specific inhibition of MIF alters endometriotic tissue growth and progression in vivo and may represent a promising potential therapeutic avenue
Impact of close-proximity air pollution on lung function in schoolchildren in the French West Indies
Separation of Recombination and SOS Response in Escherichia coli RecA Suggests LexA Interaction Sites
RecA plays a key role in homologous recombination, the induction of the DNA damage response through LexA cleavage and the activity of error-prone polymerase in Escherichia coli. RecA interacts with multiple partners to achieve this pleiotropic role, but the structural location and sequence determinants involved in these multiple interactions remain mostly unknown. Here, in a first application to prokaryotes, Evolutionary Trace (ET) analysis identifies clusters of evolutionarily important surface amino acids involved in RecA functions. Some of these clusters match the known ATP binding, DNA binding, and RecA-RecA homo-dimerization sites, but others are novel. Mutation analysis at these sites disrupted either recombination or LexA cleavage. This highlights distinct functional sites specific for recombination and DNA damage response induction. Finally, our analysis reveals a composite site for LexA binding and cleavage, which is formed only on the active RecA filament. These new sites can provide new drug targets to modulate one or more RecA functions, with the potential to address the problem of evolution of antibiotic resistance at its root
Oxidative protein labeling in mass-spectrometry-based proteomics
Oxidation of proteins and peptides is a common phenomenon, and can be employed as a labeling technique for mass-spectrometry-based proteomics. Nonspecific oxidative labeling methods can modify almost any amino acid residue in a protein or only surface-exposed regions. Specific agents may label reactive functional groups in amino acids, primarily cysteine, methionine, tyrosine, and tryptophan. Nonspecific radical intermediates (reactive oxygen, nitrogen, or halogen species) can be produced by chemical, photochemical, electrochemical, or enzymatic methods. More targeted oxidation can be achieved by chemical reagents but also by direct electrochemical oxidation, which opens the way to instrumental labeling methods. Oxidative labeling of amino acids in the context of liquid chromatography(LC)βmass spectrometry (MS) based proteomics allows for differential LC separation, improved MS ionization, and label-specific fragmentation and detection. Oxidation of proteins can create new reactive groups which are useful for secondary, more conventional derivatization reactions with, e.g., fluorescent labels. This review summarizes reactions of oxidizing agents with peptides and proteins, the corresponding methodologies and instrumentation, and the major, innovative applications of oxidative protein labeling described in selected literature from the last decade
- β¦