39 research outputs found

    On the distance spectrum and distance energy of complement of subgroup graphs of dihedral group

    Get PDF
    Let G is a connected simple graph and V(G) = {v1, v2, ..., vp} is vertex set of G. The distance matrix of G is a matrix D(G) = [d ij ] of order p where [d ij ] = d(v i , v j ) is distance between v i and v j in G. The set of all eigenvalues of matrix D(G) together with their corresponding multiplicities is named the distance spectrum of G and denoted by spec D (G). The distance energy of G is ED(G)=i=1pλi{E}_{D}(G)={\sum }_{i=1}^{p}|{\lambda }_{i}|, where λi are eigenvalues of D(G). In the recent paper, the distance spectrum and distance energy of complement of subgroup graphs of dihedral group are determined

    Effects of the Insemination of Hydrogen Peroxide-Treated Epididymal Mouse Spermatozoa on γH2AX Repair and Embryo Development

    Get PDF
    BACKGROUND: Cryopreservation of human semen for assisted reproduction is complicated by cryodamage to spermatozoa caused by excessive reactive oxygen species (ROS) generation. METHODS AND FINDINGS: We used exogenous ROS (H(2)O(2)) to simulate cryopreservation and examined DNA damage repair in embryos fertilized with sperm with H(2)O(2)-induced DNA damage. Sperm samples were collected from epididymis of adult male KM mice and treated with capacitation medium (containing 0, 0.1, 0.5 and 1 mM H(2)O(2)) or cryopreservation. The model of DNA-damaged sperm was based on sperm motility, viability and the expression of γH2AX, the DNA damage-repair marker. We examined fertility rate, development, cell cleavage, and γH2AX level in embryos fertilized with DNA-damaged sperm. Cryopreservation and 1-mM H(2)O(2) treatment produced similar DNA damage. Most of the one- and two-cell embryos fertilized with DNA-damaged sperm showed a delay in cleavage before the blastocyst stage. Immunocytochemistry revealed γH2AX in the one- and four-cell embryos. CONCLUSIONS: γH2AX may be involved in repair of preimplantation embryos fertilized with oxygen-stressed spermatozoa

    H2AX phosphorylation at the sites of DNA double-strand breaks in cultivated mammalian cells and tissues

    Get PDF
    A sequence variant of histone H2A called H2AX is one of the key components of chromatin involved in DNA damage response induced by different genotoxic stresses. Phosphorylated H2AX (γH2AX) is rapidly concentrated in chromatin domains around DNA double-strand breaks (DSBs) after the action of ionizing radiation or chemical agents and at stalled replication forks during replication stress. γH2AX foci could be easily detected in cell nuclei using immunofluorescence microscopy that allows to use γH2AX as a quantitative marker of DSBs in various applications. H2AX is phosphorylated in situ by ATM, ATR, and DNA-PK kinases that have distinct roles in different pathways of DSB repair. The γH2AX serves as a docking site for the accumulation of DNA repair proteins, and after rejoining of DSBs, it is released from chromatin. The molecular mechanism of γH2AX dephosphorylation is not clear. It is complicated and requires the activity of different proteins including phosphatases and chromatin-remodeling complexes. In this review, we summarize recently published data concerning the mechanisms and kinetics of γH2AX loss in normal cells and tissues as well as in those deficient in ATM, DNA-PK, and DSB repair proteins activity. The results of the latest scientific research of the low-dose irradiation phenomenon are presented including the bystander effect and the adaptive response estimated by γH2AX detection in cells and tissues

    Radiations and male fertility

    Get PDF
    During recent years, an increasing percentage of male infertility has to be attributed to an array of environmental, health and lifestyle factors. Male infertility is likely to be affected by the intense exposure to heat and extreme exposure to pesticides, radiations, radioactivity and other hazardous substances. We are surrounded by several types of ionizing and non-ionizing radiations and both have recognized causative effects on spermatogenesis. Since it is impossible to cover all types of radiation sources and their biological effects under a single title, this review is focusing on radiation deriving from cell phones, laptops, Wi-Fi and microwave ovens, as these are the most common sources of non-ionizing radiations, which may contribute to the cause of infertility by exploring the effect of exposure to radiofrequency radiations on the male fertility pattern. From currently available studies it is clear that radiofrequency electromagnetic fields (RF-EMF) have deleterious effects on sperm parameters (like sperm count, morphology, motility), affects the role of kinases in cellular metabolism and the endocrine system, and produces genotoxicity, genomic instability and oxidative stress. This is followed with protective measures for these radiations and future recommendations. The study concludes that the RF-EMF may induce oxidative stress with an increased level of reactive oxygen species, which may lead to infertility. This has been concluded based on available evidences from in vitro and in vivo studies suggesting that RF-EMF exposure negatively affects sperm quality

    p21 provides stage specific DNA damage control to preimplantation embryos

    No full text
    The early stage embryogenesis of higher eukaryotes lacks some of the damage response pathways such as G1/S checkpoint, G2/M checkpoint and apoptosis. We examined here the damage response of preimplantation stage embryos after fertilization with 6 Gy irradiated sperm. Sperm-irradiated embryos developed normally for the first 2.5 days, but started to exhibit a developmental delay at day 3.5. p21 was activated in the delayed embryos, which carried numerous micronuclei owing to delayed chromosome instability. Apoptosis was observed predominantly in the inner cell mass of the day 4.0 embryos. Sperm-irradiated p21-/- embryos lacked the delay, but chromosome instability and apoptosis were more pronounced than the corresponding p21 wild-type embryos. We conclude from the result that damage responses come in a stage-specific manner during preimplantation stage development; p53-dependent S checkpoint at the zygote stage, p21-mediated cell cycle arrest at the morula/blastocyst stages and apoptosis after the blastocyst stage in the inner cell mass
    corecore