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Abstract. Let G is a connected simple graph and V(G) = {v1, v2, …, vp} is vertex set of G. The 

distance matrix of G is a matrix D(G) = [dij] of order p where [dij] = d(vi, vj) is distance 

between vi and vj in G. The set of all eigenvalues of matrix D(G) together with their 

corresponding multiplicities is named the distance spectrum of G and denoted by specD(G). 

The distance energy of G is 𝐸𝐷 𝐺 =   𝜆𝑖 
𝑝
𝑖=1 , where 𝜆𝑖  are eigenvalues of D(G). In the recent 

paper, the distance spectrum and distance energy of complement of subgroup graphs of 

dihedral group are determined.  

1.  Introduction 

The study on spectrum of a graph begins with the work of Bigg [1] and defined on the adjacency 

matrix of graph. Next developed concept of spectrum based on various matrices obtained from a 

graph, such as detour spectrum [2], Laplacian spectrum [3,4], signless Laplacian spectrum [5,6], 

distance spectrum [7], detour distance Laplacian spectrum [8] and color signless Laplacian spectrum 

[9]. Until now the topic of distance spectrum is still extensively studied by researchers, see  
[10-21].   

The concept that is very close to the concept of spectrum of a graph is energy. The concept of 

energy of graph was first proposed by Gutman [22]. Adjacency energy is the first concept of energy 

that is discussed and has many benefits in the field of chemistry [12]. Further developed other 

concepts of energy that widely used in graphs, such as incidence energy [23], Laplacian incidence 

energy [24], maximum degree energy [25], matching energy [26], Harary energy [27], color energy 

[28] and distance energy [29]. Distance energy was first proposed by Indulal and Gutman [7,29]. 

Research on the distance energy of a connected simple graph also got a great attention from the 

researchers, see [13,30-38].  

The most recent development in graph theory is the topic of graph associated with a group. Several 

concepts of graph obtained from a group have been introduced, for example Cayley graph [39], 

identity graph [40], commuting graph [41], conjugate graph [42], non commuting graph [43], 

subgroup graph [44] and inverse graph [45] of a group. For given normal subgroup H of a finite group 

G, the subgroup graph Γ𝐻(𝐺) of G is defined as simple graph with 𝑉  Γ𝐻(𝐺) = 𝐺 and 𝑥𝑦 ∈
𝐸  Γ𝐻(𝐺)  if and only if 𝑥𝑦 ∈ 𝐻 [43,45].  

http://creativecommons.org/licenses/by/3.0
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From its introduction in 2012 by Anderson et al [44], research on subgroup graph is still rare and 

some of them are [45,46]. So, research on the distance spectrum and energy of subgroup graph is an 

interesting topic to be conducted. 

2.  Literature Review 

Graph in the present paper is simple and finite. Graph G is connected if there exist u-v path in G, for 

any two vertices u and v in G [48]. Graph 𝐺  with 𝑉 𝐺  = 𝑉 𝐺  and 𝑥𝑦 ∈ 𝐸 𝐺   if and only if 

𝑥𝑦  𝐸 𝐺  is named as complement of G [49]. Graph G is complete if for any two distinct vertices 

𝑥, 𝑦 ∈ 𝑉 𝐺  then 𝑥𝑦 ∈ 𝐸 𝐺 . If 𝑉 𝐺  can be partitioned into k > 1 partition sets such that an edge of G 

joining two vertices in the different partition then G is said to be k-partite graph. A k-partite graph G is 

called to be complete if for every vertices in different partition set are adjacent [50]. If 𝑉1, 𝑉2, 𝑉3, …, 

𝑉𝑘  are partition set of a complete k-partite graph and  𝑉𝑖 = 𝑛𝑖  then this graph is denoted by 

𝐾𝑛1 ,𝑛2 ,𝑛3 ,…,𝑛𝑘
. 

Let graph G is connected with V(G) = {v1, v2, …, vp} as its vertex set. The distance matrix of G is a 

p  p matrix D(G) = [dij] such that [dij] = d(vi, vj), where d(vi, vj) is the length of the shortest vi-vj path 

in graph G. The characteristics polynomial of D(G) is 𝑝𝐷 𝜆 = det⁡(𝐷 𝐺 − 𝜆𝐼) and the roots of the 

characteristics equation are named eigenvalues of D(G) or simply D-eigenvalues of graph G. The set 

of all D-eigenvalues of G together with their multiplicities is named the distance spectrum or simply 

D-spectrum of G and notated by 𝑠𝑝𝑒𝑐𝐷 𝐺  [11]. Since D-matrix is real and symmetric then all D-

eigenvalues are also real [34].  Let 𝜆1 >  𝜆2 > ⋯ >  𝜆𝑘  are distinct D-eigenvalues of G with 

multiplicities 𝑚1, 𝑚2, …, 𝑚k. According to the ordinary spectrum notation [51], then D-spectrum of G 

is notated by 

𝑠𝑝𝑒𝑐𝐷 𝐺 =  
𝜆1 𝜆2 … 𝜆𝑘

𝑚1 𝑚2 … 𝑚𝑘
 . 

The distance energy or simply D-energy 𝐸𝐷(𝐺) of connected graph G is defined as  

𝐸𝐷 𝐺 =   𝜆𝑖 

𝑝

𝑖=1

=  𝑚𝑗  𝜆𝑗  .

𝑘

𝑗 =1

 

Some previous results on D-spectrum and D-energy of a connected graphs that will useful for 

further discussion as the followings. 

Theorem 1.1. ([51], Theorem 4.1.) 

Let 𝐾𝑛1 ,𝑛2 ,𝑛3 ,…,𝑛𝑘
 is complete k-partite graph of order 𝑛 =  𝑛𝑖

𝑘
𝑖=1 . Then, characteristic polynomial 

of 𝐷 𝐾𝑛1 ,𝑛2,𝑛3 ,…,𝑛𝑘
  is   

𝑝𝐷 𝜆 = (𝜆 + 2)𝑛−𝑘   (𝜆 − 𝑛𝑖 + 2)

𝑘

𝑖=1

−  𝑛𝑖

𝑘

𝑖=1

 (𝜆 − 𝑛𝑗 + 2)

𝑘

𝑗 =1,𝑗≠𝑖

 . 

The next result was first conjectured by [52] and then proved by [53]. 

Theorem 1.2. 

If 𝑛1 , 𝑛2 , … , 𝑛𝑘 > 2 then 𝐸𝐷 𝐾𝑛1 ,𝑛2 ,𝑛3 ,…,𝑛𝑘
 = 4 𝑛1 + 𝑛2 + ⋯ +  𝑛𝑘 − 𝑘 . 

Based on Theorem 1.1. the following corollaries are obvious. 

Corollary 1.3. ([12], Corollary 3.) 

Distance spectrum of complete bipartite graph 𝐾𝑛1 ,𝑛2
 is 

𝑠𝑝𝑒𝑐𝐷 𝐾𝑛1 ,𝑛2
 =  

𝑛1 + 𝑛2 − 2 +  𝑛1
2 − 𝑛1𝑛2 − 𝑛2

2 𝑛1 + 𝑛2 − 2 +  𝑛1
2 − 𝑛1𝑛2 − 𝑛2

2 −2

1 1 𝑛1 + 𝑛2 − 2

  

Corollary 1.4. ([12], Corollary 4.) 
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For 𝑛1 , 𝑛2 > 2, 𝐸𝐷 𝐾𝑛1 ,𝑛2
 = 4(𝑛1 + 𝑛2 − 2). 

3.  Main Results 
Here, we focused on the study of subgroup graphs of dihedral group 𝐷2𝑚  of order 2m. It was well 

known that for odd n, the normal subgroup of 𝐷2𝑚  are  1 ,  𝑟𝑑   where 𝑑 𝑚  and 𝐷2𝑛  itself and for 

even m, the normal subgroups of 𝐷2𝑚  are  1 ,  𝑟𝑑   where 𝑑 𝑚 ,  𝑟2 , 𝑠 ,  𝑟2 , 𝑟𝑠  and 𝐷2𝑚  itself. 

Because the concept of D-spectrum and D-energy of graph are only for connected graphs, we focused 

on the complement of these subgroup graphs when these subgroup graphs are not connected. The 

results of this study as follows. 

Theorem 3.1. 

If 𝑚 > 3 then 

(a)  𝑠𝑝𝑒𝑐𝐷 Γ 𝑟 (𝐷2𝑚 )             =  
3𝑚 − 2 𝑚 − 2 −2

1 1 2(𝑚 − 1)
 . 

(b) 𝐸𝐷 Γ 𝑟 (𝐷2𝑚 )             = 8 𝑚 − 1 . 
Proof. 

(a) Since Γ 𝑟  𝐷2𝑚 = 2𝐾𝑚 , we have Γ 𝑟 (𝐷2𝑚 )            = 𝐾𝑚,𝑚 . By Corollary 1.3. it is obvious that 

𝑠𝑝𝑒𝑐𝐷 Γ 𝑟 (𝐷2𝑚 )             =  
3𝑚 − 2 𝑚 − 2 −2

1 1 2(𝑚 − 1)
 . 

(b) Based on the proof of (a) and because 𝑚 > 3, by Corollary 1.4. it is complete the proof.   

Theorem 3.2. 

If 𝑚 > 3 and m is even then 

(a) 𝑠𝑝𝑒𝑐𝐷 Γ 𝑟2 (𝐷2𝑚 )              =  
5𝑚−4

2

𝑚−4

2
−2

1 3 2(𝑚 − 2)
 . 

(b) 𝐸𝐷 Γ 𝑟2 (𝐷2𝑚 )              = 8(𝑚 − 2). 

Proof. 

(a) For even 𝑚 > 3, Γ 𝑟2  𝐷2𝑚 = 4𝐾𝑚/2. So, we obtain its complement is Γ 𝑟2  𝐷2𝑚               =

𝐾𝑚/2,𝑚/2,𝑚/2,𝑚/2. Applying Theorem 1.1. and performing some computation we have  

𝑝𝐷 𝜆 = (𝜆 + 2)2(𝑚−2)  𝜆 −
5𝑚 − 4

2
  𝜆 −

𝑚 − 4

2
 

3

. 

The D-eigenvalues of Γ 𝑟2  𝐷2𝑚               are (5𝑚 − 4)/2, (𝑚 − 4)/2 and -2 and their multiplicities 

are 1, 3 and 2(𝑚 − 2). Then,  

𝑠𝑝𝑒𝑐𝐷 Γ 𝑟2 (𝐷2𝑚 )              =  
5𝑚 − 4

2

𝑚 − 4

2
−2

1 3 2𝑚 − 4
 . 

(b) From (a), then 𝐸𝐷 Γ 𝑟2 (𝐷2𝑚 )              =  
5𝑚−4

2
 + 3  

𝑚−4

2
 + 2 𝑚 − 2  −2 = 8 𝑚 − 2 . We can 

also apply Theorem 1.2. when m > 4 to get 𝐸𝐷 Γ 𝑟2 (𝐷2𝑚 )              = 4  4
𝑚

2
− 4 = 8(𝑚 − 2).    

Theorem 3.3. 

If 𝑚 > 3 and m is even then 

(a)  𝑠𝑝𝑒𝑐𝐷 Γ 𝑟2 ,𝑠 (𝐷2𝑚 )                =  
3𝑚 − 2 𝑚 − 2 −2

1 1 2(𝑚 − 1)
 . 

(b) 𝐸𝐷 Γ 𝑟2 ,𝑠 (𝐷2𝑚 )                = 8(𝑚 − 1). 

Proof. 

(a) Since Γ 𝑟2 ,𝑠  𝐷2𝑚 = 𝐾𝑚 ∪ 𝐾𝑚 , we have Γ 𝑟2 ,𝑠 (𝐷2𝑚 )               = 𝐾𝑚,𝑚 . By Corollary 1.3. the proof is 

clear. 

(b) Based on the proof of (a) and because 𝑚 > 3, by Corollary 1.4. the proof is obvious. 

Theorem 3.4. 
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If 𝑚 > 3 and m is even then 

(a)  𝑠𝑝𝑒𝑐𝐷 Γ 𝑟2 ,𝑟𝑠 (𝐷2𝑚 )                 =  
3𝑚 − 2 𝑚 − 2 −2

1 1 2(𝑚 − 1)
 . 

(b) 𝐸𝐷 Γ 𝑟2 ,𝑟𝑠 (𝐷2𝑚 )                 = 8(𝑚 − 1). 

Proof. 

(a) Since Γ 𝑟2 ,𝑟𝑠  𝐷2𝑚 = 𝐾𝑚 ∪ 𝐾𝑚 , we have Γ 𝑟2 ,𝑟𝑠 (𝐷2𝑚 )                = 𝐾𝑚,𝑚 . By Corollary 1.3. we prove 

the part (a).  

(b) Based on the proof of (a) and because 𝑚 > 3, by Corollary 1.4. the proof is clear. 

4.  Conclusions 
We have computed distance spectrum and energy of complement of several subgroup graphs of 

dihedral group 𝐷2𝑚 . The remaining subgroup graphs of dihedral group 𝐷2𝑚  are given to the reader for 

further investigation.   
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