1,026 research outputs found

    Degradation of a quantum directional reference frame as a random walk

    Get PDF
    We investigate if the degradation of a quantum directional reference frame through repeated use can be modeled as a classical direction undergoing a random walk on a sphere. We demonstrate that the behaviour of the fidelity for a degrading quantum directional reference frame, defined as the average probability of correctly determining the orientation of a test system, can be fit precisely using such a model. Physically, the mechanism for the random walk is the uncontrollable back-action on the reference frame due to its use in a measurement of the direction of another system. However, we find that the magnitude of the step size of this random walk is not given by our classical model and must be determined from the full quantum description.Comment: 5 pages, no figures. Comments are welcome. v2: several changes to clarify the key results. v3: journal reference added, acknowledgements and references update

    A holistic review of the medical school admission process: examining correlates of academic underperformance

    Get PDF
    Background: Despite medical school admission committees’ best efforts, a handful of seemingly capable students invariably struggle during their first year of study. Yet, even as entrance criteria continue to broaden beyond cognitive qualifications, attention inevitably reverts back to such factors when seeking to understand these phenomena. Using a host of applicant, admission, and post-admission variables, the purpose of this inductive study, then, was to identify a constellation of student characteristics that, taken collectively, would be predictive of students at-risk of underperforming during the first year of medical school. In it, we hypothesize that a wider range of factors than previously recognized could conceivably play roles in understanding why students experience academic problems early in the medical educational continuum. Methods: The study sample consisted of the five most recent matriculant cohorts from a large, southeastern medical school (n=537). Independent variables reflected: 1) the personal demographics of applicants (e.g., age, gender); 2) academic criteria (e.g., undergraduate grade point averages [GPA], medical college admission test); 3) selection processes (e.g., entrance track, interview scores, committee votes); and 4) other indicators of personality and professionalism (e.g., Mayer-Salovey-Caruso Emotional Intelligence Test™ emotional intelligence scores, NEO PI-R™ personality profiles, and appearances before the Professional Code Committee [PCC]). The dependent variable, first-year underperformance, was defined as ANY action (repeat, conditionally advance, or dismiss) by the college's Student Progress and Promotions Committee (SPPC) in response to predefined academic criteria. This study protocol was approved by the local medical institutional review board (IRB). Results: Of the 537 students comprising the study sample, 61 (11.4%) met the specified criterion for academic underperformance. Significantly increased academic risks were identified among students who 1) had lower mean undergraduate science GPAs (OR=0.24, p=0.001); 2) entered medical school via an accelerated BS/MD track (OR=16.15, p=0.002); 3) were 31 years of age or older (OR=14.76, p=0.005); and 4) were non-unanimous admission committee admits (OR=0.53, p=0.042). Two dimensions of the NEO PI-R™ personality inventory, openness (+) and conscientiousness (−), were modestly but significantly correlated with academic underperformance. Only for the latter, however, were mean scores found to differ significantly between academic performers and underperformers. Finally, appearing before the college's PCC (OR=4.21, p=0.056) fell just short of statistical significance. Conclusions: Our review of various correlates across the matriculation process highlights the heterogeneity of factors underlying students’ underperformance during the first year of medical school and challenges medical educators to understand the complexity of predicting who, among admitted matriculants, may be at future academic risk

    Stimulation of cortical myosin phosphorylation by p114RhoGEF drives cell migration and tumor cell invasion.

    Get PDF
    Actinomyosin activity is an important driver of cell locomotion and has been shown to promote collective cell migration of epithelial sheets as well as single cell migration and tumor cell invasion. However, the molecular mechanisms underlying activation of cortical myosin to stimulate single cell movement, and the relationship between the mechanisms that drive single cell locomotion and those that mediate collective cell migration of epithelial sheets are incompletely understood. Here, we demonstrate that p114RhoGEF, an activator of RhoA that associates with non-muscle myosin IIA, regulates collective cell migration of epithelial sheets and tumor cell invasion. Depletion of p114RhoGEF resulted in specific spatial inhibition of myosin activation at cell-cell contacts in migrating epithelial sheets and the cortex of migrating single cells, but only affected double and not single phosphorylation of myosin light chain. In agreement, overall elasticity and contractility of the cells, processes that rely on persistent and more constant forces, were not affected, suggesting that p114RhoGEF mediates process-specific myosin activation. Locomotion was p114RhoGEF-dependent on Matrigel, which favors more roundish cells and amoeboid-like actinomyosin-driven movement, but not on fibronectin, which stimulates flatter cells and lamellipodia-driven, mesenchymal-like migration. Accordingly, depletion of p114RhoGEF led to reduced RhoA, but increased Rac activity. Invasion of 3D matrices was p114RhoGEF-dependent under conditions that do not require metalloproteinase activity, supporting a role of p114RhoGEF in myosin-dependent, amoeboid-like locomotion. Our data demonstrate that p114RhoGEF drives cortical myosin activation by stimulating myosin light chain double phosphorylation and, thereby, collective cell migration of epithelial sheets and amoeboid-like motility of tumor cells

    A study of general practitioners' perspectives on electronic medical records systems in NHS Scotland

    Get PDF
    <b>Background</b> Primary care doctors in NHSScotland have been using electronic medical records within their practices routinely for many years. The Scottish Health Executive eHealth strategy (2008-2011) has recently brought radical changes to the primary care computing landscape in Scotland: an information system (GPASS) which was provided free-of-charge by NHSScotland to a majority of GP practices has now been replaced by systems provided by two approved commercial providers. The transition to new electronic medical records had to be completed nationally across all health-boards by March 2012. <p></p><b> Methods</b> We carried out 25 in-depth semi-structured interviews with primary care doctors to elucidate GPs' perspectives on their practice information systems and collect more general information on management processes in the patient surgical pathway in NHSScotland. We undertook a thematic analysis of interviewees' responses, using Normalisation Process Theory as the underpinning conceptual framework. <p></p> <b>Results</b> The majority of GPs' interviewed considered that electronic medical records are an integral and essential element of their work during the consultation, playing a key role in facilitating integrated and continuity of care for patients and making clinical information more accessible. However, GPs expressed a number of reservations about various system functionalities - for example: in relation to usability, system navigation and information visualisation. <b>Conclusion </b>Our study highlights that while electronic information systems are perceived as having important benefits, there remains substantial scope to improve GPs' interaction and overall satisfaction with these systems. Iterative user-centred improvements combined with additional training in the use of technology would promote an increased understanding, familiarity and command of the range of functionalities of electronic medical records among primary care doctors

    Association of Aortic Stiffness With Biomarkers of Neuroinflammation, Synaptic Dysfunction, and Neurodegeneration

    Get PDF
    OBJECTIVES: To test the hypothesis that increased aortic stiffening is associated with greater cerebrospinal fluid (CSF) evidence of core Alzheimer's disease pathology (Aβ, phosphorylated tau (p-tau)), neurodegeneration (total tau (t-tau)), synaptic dysfunction (neurogranin), neuroaxonal injury (neurofilament light (NFL)), and neuroinflammation (YKL-40, sTREM2), we analyzed pulse wave velocity (PWV) data and CSF data among older adults. METHODS: Participants free of stroke and dementia from the Vanderbilt Memory and Aging Project, an observational community-based study, underwent cardiac magnetic resonance to assess aortic pulse wave velocity (PWV, m/sec) and lumbar puncture to obtain CSF. Linear regressions related aortic PWV to CSF Aβ, p-tau, t-tau, neurogranin, NFL, YKL-40, and sTREM2 concentrations adjusting for age, race/ethnicity, education, apolipoprotein (APOE) ε4 status, Framingham Stroke Risk Profile, and cognitive diagnosis. Models were repeated testing PWV interactions with age, diagnosis, APOE-ε4, and hypertension on each biomarker. RESULTS: 146 participants were examined (72±6 years). Aortic PWV interacted with age on p-tau (β=0.31, p=0.04), t-tau, (β=2.67, p=0.05), neurogranin (β=0.94, p=0.04), and sTREM2 (β=20.4, p=0.05). Among participants over age 73 years, higher aortic PWV related to higher p-tau (β=2.4, p=0.03), t-tau (β=19.3, p=0.05), neurogranin (β=8.4, p=0.01), and YKL-40 concentrations (β=7880, p=0.005). Aortic PWV had modest interactions with diagnosis on neurogranin (β=-10.76, p=0.03) and hypertension status on YKL-40 (β=-18020, p<0.001). CONCLUSIONS: Among our oldest participants, age 74 years and older, greater aortic stiffening is associated with in vivo biomarker evidence of neuroinflammation, tau phosphorylation, synaptic dysfunction, and neurodegeneration, but not amyloidosis. Central arterial stiffening may lead to cumulative cerebral microcirculatory damage and blood flow delivery to tissue, resulting in neuroinflammation and neurodegeneration in more advanced age

    Infrared-to-violet tunable optical activity in atomic films of GaSe, InSe, and their heterostructures

    Get PDF
    Two-dimensional semiconductors - atomic layers of materials with covalent intra-layer bonding and weak (van der Waals or quadrupole) coupling between the layers - are a new class of materials with great potential for optoelectronic applications. Among those, a special position is now being taken by post-transition metal chalcogenides (PTMC), InSe and GaSe. It has recently been found that the band gap in 2D crystals of InSe more than doubles in the monolayer compared to thick multilayer crystals, while the high mobility of conduction band electrons is promoted by their light in-plane mass. Here, we use Raman and PL measurements of encapsulated few layer samples, coupled with accurate atomic force and transmission electron microscope structural characterisation to reveal new optical properties of atomically thin GaSe preserved by hBN encapsulation. The band gaps we observe complement the spectral range provided by InSe films, so that optical activity of these two almost lattice-matched PTMC films and their heterostructures densely cover the spectrum of photons from violet to infrared. We demonstrate the realisation of the latter by the first observation of interlayer excitonic photoluminescence in few-layer InSe-GaSe heterostructures. The spatially indirect transition is direct in k-space and therefore is bright, while its energy can be tuned in a broad range by the number of layers.Comment: 8 pages 4 figure

    Pathogenesis of bovine spongiform encephalopathy in sheep

    Get PDF
    The pathogenesis of bovine spongiform encephalopathy (BSE) in sheep was studied by immunohistochemical detection of scrapie-associated prion protein (PrPSc) in the gastrointestinal, lymphoid and neural tissues following oral inoculation with BSE brain homogenate. First accumulation of PrPSc was detected after 6 months in the tonsil and the ileal Peyer’s patches. At 9 months postinfection, PrPSc accumulation involved all gut-associated lymphoid tissues and lymph nodes as well as the spleen. At this time point, PrPSc accumulation in the peripheral neural tissues was first seen in the enteric nervous system of the caudal jejunum and ileum and in the coeliac-mesenteric ganglion. In the central nervous system, PrPSc was first detected in the dorsal motor nucleus of the nervus Vagus in the medulla oblongata and in the intermediolateral column in the spinal cord segments T7–L1. At subsequent time points, PrPSc was seen to spread within the lymphoid system to also involve all non-gut-associated lymphoid tissues. In the enteric nervous system, further spread of PrPSc involved the neural plexi along the entire gastrointestinal tract and in the CNS the complete neuraxis. These findings indicate a spread of the BSE agent in sheep from the enteric nervous system through parasympathetic and sympathetic nerves to the medulla oblongata and the spinal cord

    Exploring Norms in Agile Software Teams

    Get PDF
    The majority of software developers work in teams and are thus influenced by team norms. Norms are shared expectations of how to behave and regulate the interaction between team members. Our aim of this study is to gain more knowledge about team norms in software teams and to increase the understanding of how norms influence teamwork in agile software development projects. We conducted a study of norms in four agile teams located in Norway and Malaysia. The analysis of 22 interviews revealed that we could extract a varied set of both injunctive and descriptive norms. Our results suggest that team norms have an important role in enabling team performance.acceptedVersio

    WNT signalling in prostate cancer

    Get PDF
    Genome sequencing and gene expression analyses of prostate tumours have highlighted the potential importance of genetic and epigenetic changes observed in WNT signalling pathway components in prostate tumours-particularly in the development of castration-resistant prostate cancer. WNT signalling is also important in the prostate tumour microenvironment, in which WNT proteins secreted by the tumour stroma promote resistance to therapy, and in prostate cancer stem or progenitor cells, in which WNT-β-catenin signals promote self-renewal or expansion. Preclinical studies have demonstrated the potential of inhibitors that target WNT receptor complexes at the cell membrane or that block the interaction of β-catenin with lymphoid enhancer-binding factor 1 and the androgen receptor, in preventing prostate cancer progression. Some WNT signalling inhibitors are in phase I trials, but they have yet to be tested in patients with prostate cancer

    Detection and Localisation of PrPSc in the Liver of Sheep Infected with Scrapie and Bovine Spongiform Encephalopathy

    Get PDF
    Prions are largely contained within the nervous and lymphoid tissue of transmissible spongiform encephalopathy (TSE) infected animals. However, following advances in diagnostic sensitivity, PrPSc, a marker for prion disease, can now be located in a wide range of viscera and body fluids including muscle, saliva, blood, urine and milk, raising concerns that exposure to these materials could contribute to the spread of disease in humans and animals. Previously we demonstrated low levels of infectivity in the liver of sheep experimentally challenged with bovine spongiform encephalopathy. In this study we show that PrPSc accumulated in the liver of 89% of sheep naturally infected with scrapie and 100% of sheep challenged with BSE, at both clinical and preclinical stages of the disease. PrPSc was demonstrated in the absence of obvious inflammatory foci and was restricted to isolated resident cells, most likely Kupffer cells
    corecore