353 research outputs found

    Semi-local quantum liquids

    Get PDF
    Gauge/gravity duality applied to strongly interacting systems at finite density predicts a universal intermediate energy phase to which we refer as a semi-local quantum liquid. Such a phase is characterized by a finite spatial correlation length, but an infinite correlation time and associated nontrivial scaling behavior in the time direction, as well as a nonzero entropy density. For a holographic system at a nonzero chemical potential, this unstable phase sets in at an energy scale of order of the chemical potential, and orders at lower energies into other phases; examples include superconductors and antiferromagnetic-type states. In this paper we give examples in which it also orders into Fermi liquids of "heavy" fermions. While the precise nature of the lower energy state depends on the specific dynamics of the individual system, we argue that the semi-local quantum liquid emerges universally at intermediate energies through deconfinement (or equivalently fractionalization). We also discuss the possible relevance of such a semi-local quantum liquid to heavy electron systems and the strange metal phase of high temperature cuprate superconductors.Comment: 31 pages, 7 figure

    Evaluation of the current knowledge limitations in breast cancer research: a gap analysis

    Get PDF
    BACKGROUND A gap analysis was conducted to determine which areas of breast cancer research, if targeted by researchers and funding bodies, could produce the greatest impact on patients. METHODS Fifty-six Breast Cancer Campaign grant holders and prominent UK breast cancer researchers participated in a gap analysis of current breast cancer research. Before, during and following the meeting, groups in seven key research areas participated in cycles of presentation, literature review and discussion. Summary papers were prepared by each group and collated into this position paper highlighting the research gaps, with recommendations for action. RESULTS Gaps were identified in all seven themes. General barriers to progress were lack of financial and practical resources, and poor collaboration between disciplines. Critical gaps in each theme included: (1) genetics (knowledge of genetic changes, their effects and interactions); (2) initiation of breast cancer (how developmental signalling pathways cause ductal elongation and branching at the cellular level and influence stem cell dynamics, and how their disruption initiates tumour formation); (3) progression of breast cancer (deciphering the intracellular and extracellular regulators of early progression, tumour growth, angiogenesis and metastasis); (4) therapies and targets (understanding who develops advanced disease); (5) disease markers (incorporating intelligent trial design into all studies to ensure new treatments are tested in patient groups stratified using biomarkers); (6) prevention (strategies to prevent oestrogen-receptor negative tumours and the long-term effects of chemoprevention for oestrogen-receptor positive tumours); (7) psychosocial aspects of cancer (the use of appropriate psychosocial interventions, and the personal impact of all stages of the disease among patients from a range of ethnic and demographic backgrounds). CONCLUSION Through recommendations to address these gaps with future research, the long-term benefits to patients will include: better estimation of risk in families with breast cancer and strategies to reduce risk; better prediction of drug response and patient prognosis; improved tailoring of treatments to patient subgroups and development of new therapeutic approaches; earlier initiation of treatment; more effective use of resources for screening populations; and an enhanced experience for people with or at risk of breast cancer and their families. The challenge to funding bodies and researchers in all disciplines is to focus on these gaps and to drive advances in knowledge into improvements in patient care

    Quantum Criticality in Heavy Fermion Metals

    Full text link
    Quantum criticality describes the collective fluctuations of matter undergoing a second-order phase transition at zero temperature. Heavy fermion metals have in recent years emerged as prototypical systems to study quantum critical points. There have been considerable efforts, both experimental and theoretical, which use these magnetic systems to address problems that are central to the broad understanding of strongly correlated quantum matter. Here, we summarize some of the basic issues, including i) the extent to which the quantum criticality in heavy fermion metals goes beyond the standard theory of order-parameter fluctuations, ii) the nature of the Kondo effect in the quantum critical regime, iii) the non-Fermi liquid phenomena that accompany quantum criticality, and iv) the interplay between quantum criticality and unconventional superconductivity.Comment: (v2) 39 pages, 8 figures; shortened per the editorial mandate; to appear in Nature Physics. (v1) 43 pages, 8 figures; Non-technical review article, intended for general readers; the discussion part contains more specialized topic

    Dynamics of a Quantum Phase Transition and Relaxation to a Steady State

    Full text link
    We review recent theoretical work on two closely related issues: excitation of an isolated quantum condensed matter system driven adiabatically across a continuous quantum phase transition or a gapless phase, and apparent relaxation of an excited system after a sudden quench of a parameter in its Hamiltonian. Accordingly the review is divided into two parts. The first part revolves around a quantum version of the Kibble-Zurek mechanism including also phenomena that go beyond this simple paradigm. What they have in common is that excitation of a gapless many-body system scales with a power of the driving rate. The second part attempts a systematic presentation of recent results and conjectures on apparent relaxation of a pure state of an isolated quantum many-body system after its excitation by a sudden quench. This research is motivated in part by recent experimental developments in the physics of ultracold atoms with potential applications in the adiabatic quantum state preparation and quantum computation.Comment: 117 pages; review accepted in Advances in Physic

    Post-mortem assessment in vascular dementia: advances and aspirations.

    Get PDF
    BACKGROUND: Cerebrovascular lesions are a frequent finding in the elderly population. However, the impact of these lesions on cognitive performance, the prevalence of vascular dementia, and the pathophysiology behind characteristic in vivo imaging findings are subject to controversy. Moreover, there are no standardised criteria for the neuropathological assessment of cerebrovascular disease or its related lesions in human post-mortem brains, and conventional histological techniques may indeed be insufficient to fully reflect the consequences of cerebrovascular disease. DISCUSSION: Here, we review and discuss both the neuropathological and in vivo imaging characteristics of cerebrovascular disease, prevalence rates of vascular dementia, and clinico-pathological correlations. We also discuss the frequent comorbidity of cerebrovascular pathology and Alzheimer's disease pathology, as well as the difficult and controversial issue of clinically differentiating between Alzheimer's disease, vascular dementia and mixed Alzheimer's disease/vascular dementia. Finally, we consider additional novel approaches to complement and enhance current post-mortem assessment of cerebral human tissue. CONCLUSION: Elucidation of the pathophysiology of cerebrovascular disease, clarification of characteristic findings of in vivo imaging and knowledge about the impact of combined pathologies are needed to improve the diagnostic accuracy of clinical diagnoses

    QCD and strongly coupled gauge theories : challenges and perspectives

    Get PDF
    We highlight the progress, current status, and open challenges of QCD-driven physics, in theory and in experiment. We discuss how the strong interaction is intimately connected to a broad sweep of physical problems, in settings ranging from astrophysics and cosmology to strongly coupled, complex systems in particle and condensed-matter physics, as well as to searches for physics beyond the Standard Model. We also discuss how success in describing the strong interaction impacts other fields, and, in turn, how such subjects can impact studies of the strong interaction. In the course of the work we offer a perspective on the many research streams which flow into and out of QCD, as well as a vision for future developments.Peer reviewe

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Therapeutically relevant structural and functional mechanisms triggered by physical and cognitive exercise

    Get PDF
    Corrected by: Erratum: Molecular Psychiatry (2016) 21, 1645–1645; doi:10.1038/mp.2016.57; published online 19 April 2016. Following publication of the above article, the authors noticed that the second author’s name was presented incorrectly. The author’s name should have appeared as M Fiatarone Singh. The publisher regrets the error.Physical and cognitive exercise may prevent or delay dementia in later life but the neural mechanisms underlying these therapeutic benefits are largely unknown. We examined structural and functional magnetic resonance imaging (MRI) brain changes after 6 months of progressive resistance training (PRT), computerized cognitive training (CCT) or combined intervention. A total of 100 older individuals (68 females, average age=70.1, s.d.±6.7, 55-87 years) with dementia prodrome mild cognitive impairment were recruited in the SMART (Study of Mental Activity and Resistance Training) Trial. Participants were randomly assigned into four intervention groups: PRT+CCT, PRT+SHAM CCT, CCT+SHAM PRT and double SHAM. Multimodal MRI was conducted at baseline and at 6 months of follow-up (immediately after training) to measure structural and spontaneous functional changes in the brain, with a focus on the hippocampus and posterior cingulate regions. Participants' cognitive changes were also assessed before and after training. We found that PRT but not CCT significantly improved global cognition (F(90)=4.1, P<0.05) as well as expanded gray matter in the posterior cingulate (Pcorrected <0.05), and these changes were related to each other (r=0.25, P=0.03). PRT also reversed progression of white matter hyperintensities, a biomarker of cerebrovascular disease, in several brain areas. In contrast, CCT but not PRT attenuated decline in overall memory performance (F(90)=5.7, P<0.02), mediated by enhanced functional connectivity between the hippocampus and superior frontal cortex. Our findings indicate that physical and cognitive training depend on discrete neuronal mechanisms for their therapeutic efficacy, information that may help develop targeted lifestyle-based preventative strategies.Molecular Psychiatry advance online publication, 22 March 2016; doi:10.1038/mp.2016.19.C Suo, M Fiatarone Singh, N Gates, W Wen, P Sachdev, H Brodaty, N Saigal, GC Wilson, J Meiklejohn, N Singh, BT Baune, M Baker, N Foroughi, Y Wang, Y Mavros, A Lampit, I Leung, and MJ Valenzuel

    Quantum critical behaviour in the superfluid density of strongly underdoped ultrathin cuprate films

    Full text link
    A central issue in the physics of high temperature superconductors is to understand superconductivity within a single copper-oxide layer or bilayer, the fundamental structural unit in the cuprates, and how it is lost with underdoping. As mobile holes are removed from the CuO_2 planes, the transition temperature T_C and superfluid density n_S decrease in a surprisingly correlated fashion in crystals and thick films. We seek to elucidate the intrinsic physics of bilayers in the strongly underdoped regime, near the critical doping level where superconductivity disappears. We report measurements of n_S(T) in films of Y_{1-x}Ca_xBa_2Cu_3O_{7-\delta} as thin as two copper-oxide bilayers with T_C's as low as 3 K. In addition to seeing the two-dimensional (2D) Kosterlitz-Thouless-Berezinski transition at T_C, we observe a remarkable scaling of T_C with n_S(0) that demonstrates that the disappearance of superconductivity with underdoping is due to quantum fluctuations near a T = 0 2D quantum critical point.Comment: 13 pages, 2 figur
    corecore