292 research outputs found
Semi-local quantum liquids
Gauge/gravity duality applied to strongly interacting systems at finite
density predicts a universal intermediate energy phase to which we refer as a
semi-local quantum liquid. Such a phase is characterized by a finite spatial
correlation length, but an infinite correlation time and associated nontrivial
scaling behavior in the time direction, as well as a nonzero entropy density.
For a holographic system at a nonzero chemical potential, this unstable phase
sets in at an energy scale of order of the chemical potential, and orders at
lower energies into other phases; examples include superconductors and
antiferromagnetic-type states. In this paper we give examples in which it also
orders into Fermi liquids of "heavy" fermions. While the precise nature of the
lower energy state depends on the specific dynamics of the individual system,
we argue that the semi-local quantum liquid emerges universally at intermediate
energies through deconfinement (or equivalently fractionalization). We also
discuss the possible relevance of such a semi-local quantum liquid to heavy
electron systems and the strange metal phase of high temperature cuprate
superconductors.Comment: 31 pages, 7 figure
Quantum critical behaviour in the superfluid density of strongly underdoped ultrathin cuprate films
A central issue in the physics of high temperature superconductors is to
understand superconductivity within a single copper-oxide layer or bilayer, the
fundamental structural unit in the cuprates, and how it is lost with
underdoping. As mobile holes are removed from the CuO_2 planes, the transition
temperature T_C and superfluid density n_S decrease in a surprisingly
correlated fashion in crystals and thick films. We seek to elucidate the
intrinsic physics of bilayers in the strongly underdoped regime, near the
critical doping level where superconductivity disappears. We report
measurements of n_S(T) in films of Y_{1-x}Ca_xBa_2Cu_3O_{7-\delta} as thin as
two copper-oxide bilayers with T_C's as low as 3 K. In addition to seeing the
two-dimensional (2D) Kosterlitz-Thouless-Berezinski transition at T_C, we
observe a remarkable scaling of T_C with n_S(0) that demonstrates that the
disappearance of superconductivity with underdoping is due to quantum
fluctuations near a T = 0 2D quantum critical point.Comment: 13 pages, 2 figur
Polygenic resilience scores capture protective genetic effects for Alzheimer’s disease
Polygenic risk scores (PRSs) can boost risk prediction in late-onset Alzheimer’s disease (LOAD) beyond apolipoprotein E (APOE) but have not been leveraged to identify genetic resilience factors. Here, we sought to identify resilience-conferring common genetic variants in (1) unaffected individuals having high PRSs for LOAD, and (2) unaffected APOE-ε4 carriers also having high PRSs for LOAD. We used genome-wide association study (GWAS) to contrast “resilient” unaffected individuals at the highest genetic risk for LOAD with LOAD cases at comparable risk. From GWAS results, we constructed polygenic resilience scores to aggregate the addictive contributions of risk-orthogonal common variants that promote resilience to LOAD. Replication of resilience scores was undertaken in eight independent studies. We successfully replicated two polygenic resilience scores that reduce genetic risk penetrance for LOAD. We also showed that polygenic resilience scores positively correlate with polygenic risk scores in unaffected individuals, perhaps aiding in staving off disease. Our findings align with the hypothesis that a combination of risk-independent common variants mediates resilience to LOAD by moderating genetic disease risk
Quantum Criticality in Heavy Fermion Metals
Quantum criticality describes the collective fluctuations of matter
undergoing a second-order phase transition at zero temperature. Heavy fermion
metals have in recent years emerged as prototypical systems to study quantum
critical points. There have been considerable efforts, both experimental and
theoretical, which use these magnetic systems to address problems that are
central to the broad understanding of strongly correlated quantum matter. Here,
we summarize some of the basic issues, including i) the extent to which the
quantum criticality in heavy fermion metals goes beyond the standard theory of
order-parameter fluctuations, ii) the nature of the Kondo effect in the quantum
critical regime, iii) the non-Fermi liquid phenomena that accompany quantum
criticality, and iv) the interplay between quantum criticality and
unconventional superconductivity.Comment: (v2) 39 pages, 8 figures; shortened per the editorial mandate; to
appear in Nature Physics. (v1) 43 pages, 8 figures; Non-technical review
article, intended for general readers; the discussion part contains more
specialized topic
Dynamics of a Quantum Phase Transition and Relaxation to a Steady State
We review recent theoretical work on two closely related issues: excitation
of an isolated quantum condensed matter system driven adiabatically across a
continuous quantum phase transition or a gapless phase, and apparent relaxation
of an excited system after a sudden quench of a parameter in its Hamiltonian.
Accordingly the review is divided into two parts. The first part revolves
around a quantum version of the Kibble-Zurek mechanism including also phenomena
that go beyond this simple paradigm. What they have in common is that
excitation of a gapless many-body system scales with a power of the driving
rate. The second part attempts a systematic presentation of recent results and
conjectures on apparent relaxation of a pure state of an isolated quantum
many-body system after its excitation by a sudden quench. This research is
motivated in part by recent experimental developments in the physics of
ultracold atoms with potential applications in the adiabatic quantum state
preparation and quantum computation.Comment: 117 pages; review accepted in Advances in Physic
Evaluation of the current knowledge limitations in breast cancer research: a gap analysis
BACKGROUND
A gap analysis was conducted to determine which areas of breast cancer research, if targeted by researchers and funding bodies, could produce the greatest impact on patients.
METHODS
Fifty-six Breast Cancer Campaign grant holders and prominent UK breast cancer researchers participated in a gap analysis of current breast cancer research. Before, during and following the meeting, groups in seven key research areas participated in cycles of presentation, literature review and discussion. Summary papers were prepared by each group and collated into this position paper highlighting the research gaps, with recommendations for action.
RESULTS
Gaps were identified in all seven themes. General barriers to progress were lack of financial and practical resources, and poor collaboration between disciplines. Critical gaps in each theme included: (1) genetics (knowledge of genetic changes, their effects and interactions); (2) initiation of breast cancer (how developmental signalling pathways cause ductal elongation and branching at the cellular level and influence stem cell dynamics, and how their disruption initiates tumour formation); (3) progression of breast cancer (deciphering the intracellular and extracellular regulators of early progression, tumour growth, angiogenesis and metastasis); (4) therapies and targets (understanding who develops advanced disease); (5) disease markers (incorporating intelligent trial design into all studies to ensure new treatments are tested in patient groups stratified using biomarkers); (6) prevention (strategies to prevent oestrogen-receptor negative tumours and the long-term effects of chemoprevention for oestrogen-receptor positive tumours); (7) psychosocial aspects of cancer (the use of appropriate psychosocial interventions, and the personal impact of all stages of the disease among patients from a range of ethnic and demographic backgrounds).
CONCLUSION
Through recommendations to address these gaps with future research, the long-term benefits to patients will include: better estimation of risk in families with breast cancer and strategies to reduce risk; better prediction of drug response and patient prognosis; improved tailoring of treatments to patient subgroups and development of new therapeutic approaches; earlier initiation of treatment; more effective use of resources for screening populations; and an enhanced experience for people with or at risk of breast cancer and their families. The challenge to funding bodies and researchers in all disciplines is to focus on these gaps and to drive advances in knowledge into improvements in patient care
Genome-wide Meta-analysis Finds the ACSL5-ZDHHC6 Locus Is Associated with ALS and Links Weight Loss to the Disease Genetics
We meta-analyze amyotrophic lateral sclerosis (ALS) genome-wide association study (GWAS) data of European and Chinese populations (84,694 individuals). We find an additional significant association between rs58854276 spanning ACSL5-ZDHHC6 with ALS (p = 8.3 × 10−9), with replication in an independent Australian cohort (1,502 individuals; p = 0.037). Moreover, B4GALNT1, G2E3-SCFD1, and TRIP11-ATXN3 are identified using a gene-based analysis. ACSL5 has been associated with rapid weight loss, as has another ALS-associated gene, GPX3. Weight loss is frequent in ALS patients and is associated with shorter survival. We investigate the effect of the ACSL5 and GPX3 single-nucleotide polymorphisms (SNPs), using longitudinal body composition and weight data of 77 patients and 77 controls. In patients’ fat-free mass, although not significant, we observe an effect in the expected direction (rs58854276: −2.1 ± 1.3 kg/A allele, p = 0.053; rs3828599: −1.0 ± 1.3 kg/A allele, p = 0.22). No effect was observed in controls. Our findings support the increasing interest in lipid metabolism in ALS and link the disease genetics to weight loss in patients
Folate Augmentation of Treatment – Evaluation for Depression (FolATED): protocol of a randomised controlled trial
<p>Abstract</p> <p>Background</p> <p>Clinical depression is common, debilitating and treatable; one in four people experience it during their lives. The majority of sufferers are treated in primary care and only half respond well to active treatment. Evidence suggests that folate may be a useful adjunct to antidepressant treatment: 1) patients with depression often have a functional folate deficiency; 2) the severity of such deficiency, indicated by elevated homocysteine, correlates with depression severity, 3) low folate is associated with poor antidepressant response, and 4) folate is required for the synthesis of neurotransmitters implicated in the pathogenesis and treatment of depression.</p> <p>Methods/Design</p> <p>The primary objective of this trial is to estimate the effect of folate augmentation in new or continuing treatment of depressive disorder in primary and secondary care. Secondary objectives are to evaluate the cost-effectiveness of folate augmentation of antidepressant treatment, investigate how the response to antidepressant treatment depends on genetic polymorphisms relevant to folate metabolism and antidepressant response, and explore whether baseline folate status can predict response to antidepressant treatment.</p> <p>Seven hundred and thirty patients will be recruited from North East Wales, North West Wales and Swansea. Patients with moderate to severe depression will be referred to the trial by their GP or Psychiatrist. If patients consent they will be assessed for eligibility and baseline measures will be undertaken.</p> <p>Blood samples will be taken to exclude patients with folate and B12 deficiency. Some of the blood taken will be used to measure homocysteine levels and for genetic analysis (with additional consent). Eligible participants will be randomised to receive 5 mg of folic acid or placebo. Patients with B12 deficiency or folate deficiency will be given appropriate treatment and will be monitored in the 'comprehensive cohort study'. Assessments will be at screening, randomisation and 3 subsequent follow-ups.</p> <p>Discussion</p> <p>If folic acid is shown to improve the efficacy of antidepressants, then it will provide a safe, simple and cheap way of improving the treatment of depression in primary and secondary care.</p> <p>Trial registration</p> <p>Current controlled trials ISRCTN37558856</p
Differential expression of MUC genes in endometrial and cervical tissues and tumors
BACKGROUND: Mucin glycoprotein's are major components of mucus and are considered an important class of tumor associated antigens. The objective of this study was to investigate the expression of human MUC genes (MUC1, MUC2, MUC5B, MUC5AC and MUC8) in human endometrium and cervix, and to compare and quantitate the expression of MUC genes in normal and cancerous tissues. METHODS: Slot blot techniques were used to study the MUC gene expression and quantitation. RESULTS: Of the five-mucin genes studied, MUC1, MUC5B and MUC8 showed high expression levels in the normal and cancerous endometrial and cervical tissues, MUC2 and MUC5AC showed considerably lower expression. Statistically, higher levels of MUC1, MUC5B and MUC8 were observed in endometrial adenocarcinomas compared to normal tissues. In contrast, only MUC1 levels increased with no significant changes in expression of MUC5B and MUC8 in cervical tumors over normal cervical tissues. CONCLUSION: Endometrial tumors showed increased expression of MUC1, MUC5B and MUC8 over normal tissues. Only MUC1 appears to be increase, in cervical tumors. All the studied tissues showed high and consistent expression of MUC8 mRNA. Low to neglible levels of MUC2 and MUC5AC were observed in all studied endometrial and cervical tissues
- …