799 research outputs found

    Assessing population impacts of toxicant-induced disruption of breeding behaviours using an individual-based model for the three-spined stickleback

    Get PDF
     This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this recordThe effects of toxicant exposure on individuals captured in standard environmental risk assessments (ERA) do not necessarily translate proportionally into effects at the population-level. Population models can incorporate population resilience, physiological susceptibility, and likelihood of exposure, and can therefore be employed to extrapolate from individual- to population-level effects in ERA. Here, we present the development of an individual-based model (IBM) for the three-spined stickleback (Gasterosteus aculeatus) and its application in assessing population-level effects of disrupted male breeding behaviour after exposure to the anti-androgenic pesticide, fenitrothion. The stickleback is abundant in marine, brackish, and freshwater systems throughout Europe and their complex breeding strategy makes wild populations potentially vulnerable to the effects of endocrine disrupting chemicals (EDCs). Modelled population dynamics matched those of a UK field population and the IBM is therefore considered to be representative of a natural population. Literature derived dose-response relationships of fenitrothion-induced disruption of male breeding behaviours were applied in the IBM to assess population-level impacts. The modelled population was exposed to fenitrothion under both continuous (worst-case) and intermittent (realistic) exposure patterns and population recovery was assessed. The results suggest that disruption of male breeding behaviours at the individual-level cause impacts on population abundance under both fenitrothion exposure regimes; however, density-dependent processes can compensate for some of these effects, particularly for an intermittent exposure scenario. Our findings further demonstrate the importance of understanding life-history traits, including reproductive strategies and behaviours, and their density-dependence, when assessing the potential population-level risks of EDCs.Syngenta LtdBiotechnology and Biological Sciences Research Council (BBSRC

    Helping in humans and other animals: a fruitful interdisciplinary dialogue.

    Get PDF
    Humans are arguably unique in the extent and scale of cooperation with unrelated individuals. While pairwise interactions among non-relatives occur in some non-human species, there is scant evidence of the large-scale, often unconditional prosociality that characterizes human social behaviour. Consequently, one may ask whether research on cooperation in humans can offer general insights to researchers working on similar questions in non-human species, and whether research on humans should be published in biology journals. We contend that the answer to both of these questions is yes. Most importantly, social behaviour in humans and other species operates under the same evolutionary framework. Moreover, we highlight how an open dialogue between different fields can inspire studies on humans and non-human species, leading to novel approaches and insights. Biology journals should encourage these discussions rather than drawing artificial boundaries between disciplines. Shared current and future challenges are to study helping in ecologically relevant contexts in order to correctly interpret how payoff matrices translate into inclusive fitness, and to integrate mechanisms into the hitherto largely functional theory. We can and should study human cooperation within a comparative framework in order to gain a full understanding of the evolution of helping

    Population Dynamics Constrain the Cooperative Evolution of Cross-Feeding

    Get PDF
    Cross-feeding is the exchange of nutrients among species of microbes. It has two potential evolutionary origins, one as an exchange of metabolic wastes or byproducts among species, the other as a form of cooperation known as reciprocal altruism. This paper explores the conditions favoring the origin of cooperative cross-feeding between two species. There is an extensive literature on the evolution of cooperation, and some of the requirements for the evolution of cooperative cross-feeding follow from this prior work–specifically the requirement that interactions be limited to small groups of individuals, such as colonies in a spatially structured environment. Evolution of cooperative cross-feeding by a species also requires that cross-feeding from the partner species already exists, so that the cooperating mutant will automatically be reciprocated for its actions. Beyond these considerations, some unintuitive dynamical constraints apply. In particular, the benefit of cooperative cross-feeding applies only in the range of intermediate cell densities. At low density, resource concentrations are too low to offset the cost of cooperation. At high density, resources shared by both species become limiting, and the two species become competitors. These considerations suggest that the evolution of cooperative cross-feeding in nature may be more challenging than for other types of cooperation. However, the principles identified here may enable the experimental evolution of cross-feeding, as born out by a recent study

    CdSe Quantum Dot (QD)-Induced Morphological and Functional Impairments to Liver in Mice

    Get PDF
    Quantum dots (QDs), as unique nanoparticle probes, have been used in in vivo fluorescence imaging such as cancers. Due to the novel characteristics in fluorescence, QDs represent a family of promising substances to be used in experimental and clinical imaging. Thus far, the toxicity and harmful health effects from exposure (including environmental exposure) to QDs are not recognized, but are largely concerned by the public. To assess the biological effects of QDs, we established a mouse model of acute and chronic exposure to QDs. Results from the present study suggested that QD particles could readily spread into various organs, and liver was the major organ for QD accumulation in mice from both the acute and chronic exposure. QDs caused significant impairments to livers from mice with both acute and chronic QD exposure as reflected by morphological alternation to the hepatic lobules and increased oxidative stress. Moreover, QDs remarkably induced the production of intracellular reactive oxygen species (ROS) along with cytotoxicity, as characterized by a significant increase of the malondialdehyde (MDA) level within hepatocytes. However, the increase of the MDA level in response to QD treatment could be partially blunted by the pre-treatment of cells with beta-mercaptoethanol (β-ME). These data suggested ROS played a crucial role in causing oxidative stress-associated cellular damage from QD exposure; nevertheless other unidentified mediators might also be involved in QD-mediated cellular impairments. Importantly, we demonstrated that the hepatoxicity caused by QDs in vivo and in vitro was much greater than that induced by cadmium ions at a similar or even a higher dose. Taken together, the mechanism underlying QD-mediated biological influences might derive from the toxicity of QD particles themselves, and from free cadmium ions liberated from QDs as well

    Recommendations to improve physical activity among teenagers- A qualitative study with ethnic minority and European teenagers

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>To understand the key challenges and explore recommendations from teenagers to promote physical activity with a focus on ethnic minority children.</p> <p>Methods</p> <p>Focus groups with teenagers aged 16-18 of Bangladeshi, Somali or Welsh descent attending a participating school in South Wales, UK. There were seventy four participants (18 Somali, 24 Bangladeshi and 32 Welsh children) divided into 12 focus groups.</p> <p>Results</p> <p>The boys were more positive about the benefits of exercise than the girls and felt there were not enough facilities or enough opportunity for unsupervised activity. The girls felt there was a lack of support to exercise from their family. All the children felt that attitudes to activity for teenagers needed to change, so that there was more family and community support for girls to be active and for boys to have freedom to do activities they wanted without formal supervision. It was felt that older children from all ethnic backgrounds should be involved more in delivering activities and schools needs to provide more frequent and a wider range of activities.</p> <p>Conclusions</p> <p>This study takes a child-focused approach to explore how interventions should be designed to promote physical activity in youth. Interventions need to improve access to facilities but also counteract attitudes that teenagers should be studying or working and not 'hanging about' playing with friends. Thus, the value of activity for teenagers needs to be promoted not just among the teenagers but with their teachers, parents and members of the community.</p

    Study protocol: can a school gardening intervention improve children's diets?

    Get PDF
    BACKGROUND: The current academic literature suggests there is a potential for using gardening as a tool to improve children's fruit and vegetable intake. This study is two parallel randomised controlled trials (RCT) devised to evaluate the school gardening programme of the Royal Horticultural Society (RHS) Campaign for School Gardening, to determine if it has an effect on children's fruit and vegetable intake. METHOD/DESIGN: Trial One will consist of 26 schools; these schools will be randomised into two groups, one to receive the intensive intervention as "Partner Schools" and the other to receive the less intensive intervention as "Associate Schools". Trial Two will consist of 32 schools; these schools will be randomised into either the less intensive intervention "Associate Schools" or a comparison group with delayed intervention. Baseline data collection will be collected using a 24-hour food diary (CADET) to collect data on dietary intake and a questionnaire exploring children's knowledge and attitudes towards fruit and vegetables. A process measures questionnaire will be used to assess each school's gardening activities. DISCUSSION: The results from these trials will provide information on the impact of the RHS Campaign for School Gardening on children's fruit and vegetable intake. The evaluation will provide valuable information for designing future research in primary school children's diets and school based interventions. TRIAL REGISTRATION: ISRCTN11396528

    Evolutionary connectionism: algorithmic principles underlying the evolution of biological organisation in evo-devo, evo-eco and evolutionary transitions

    Get PDF
    The mechanisms of variation, selection and inheritance, on which evolution by natural selection depends, are not fixed over evolutionary time. Current evolutionary biology is increasingly focussed on understanding how the evolution of developmental organisations modifies the distribution of phenotypic variation, the evolution of ecological relationships modifies the selective environment, and the evolution of reproductive relationships modifies the heritability of the evolutionary unit. The major transitions in evolution, in particular, involve radical changes in developmental, ecological and reproductive organisations that instantiate variation, selection and inheritance at a higher level of biological organisation. However, current evolutionary theory is poorly equipped to describe how these organisations change over evolutionary time and especially how that results in adaptive complexes at successive scales of organisation (the key problem is that evolution is self-referential, i.e. the products of evolution change the parameters of the evolutionary process). Here we first reinterpret the central open questions in these domains from a perspective that emphasises the common underlying themes. We then synthesise the findings from a developing body of work that is building a new theoretical approach to these questions by converting well-understood theory and results from models of cognitive learning. Specifically, connectionist models of memory and learning demonstrate how simple incremental mechanisms, adjusting the relationships between individually-simple components, can produce organisations that exhibit complex system-level behaviours and improve the adaptive capabilities of the system. We use the term “evolutionary connectionism” to recognise that, by functionally equivalent processes, natural selection acting on the relationships within and between evolutionary entities can result in organisations that produce complex system-level behaviours in evolutionary systems and modify the adaptive capabilities of natural selection over time. We review the evidence supporting the functional equivalences between the domains of learning and of evolution, and discuss the potential for this to resolve conceptual problems in our understanding of the evolution of developmental, ecological and reproductive organisations and, in particular, the major evolutionary transitions

    Integrating personality research and animal contest theory: aggressiveness in the green swordtail <i>Xiphophorus helleri</i>

    Get PDF
    &lt;p&gt;Aggression occurs when individuals compete over limiting resources. While theoretical studies have long placed a strong emphasis on context-specificity of aggression, there is increasing recognition that consistent behavioural differences exist among individuals, and that aggressiveness may be an important component of individual personality. Though empirical studies tend to focus on one aspect or the other, we suggest there is merit in modelling both within-and among-individual variation in agonistic behaviour simultaneously. Here, we demonstrate how this can be achieved using multivariate linear mixed effect models. Using data from repeated mirror trials and dyadic interactions of male green swordtails, &lt;i&gt;Xiphophorus helleri&lt;/i&gt;, we show repeatable components of (co)variation in a suite of agonistic behaviour that is broadly consistent with a major axis of variation in aggressiveness. We also show that observed focal behaviour is dependent on opponent effects, which can themselves be repeatable but were more generally found to be context specific. In particular, our models show that within-individual variation in agonistic behaviour is explained, at least in part, by the relative size of a live opponent as predicted by contest theory. Finally, we suggest several additional applications of the multivariate models demonstrated here. These include testing the recently queried functional equivalence of alternative experimental approaches, (e. g., mirror trials, dyadic interaction tests) for assaying individual aggressiveness.&lt;/p&gt
    corecore