4,080 research outputs found

    The global spread of crop pests and pathogens

    Get PDF
    AcceptedArticle in PressCopyright © 2014 The Authors. Global Ecology and Biogeography published by John Wiley & Sons Ltd.Aim: To describe the patterns and trends in the spread of crop pests and pathogens around the world, and determine the socioeconomic, environmental and biological factors underlying the rate and degree of redistribution of crop-destroying organisms. Location: Global. Methods: Current country- and state-level distributions of 1901 pests and pathogens and historical observation dates for 424 species were compared with potential distributions based upon distributions of host crops. The degree of 'saturation', i.e. the fraction of the potential distribution occupied, was related to pest type, host range, crop production, climate and socioeconomic variables using linear models. Results: More than one-tenth of all pests have reached more than half the countries that grow their hosts. If current trends continue, many important crop-producing countries will be fully saturated with pests by the middle of the century. While dispersal increases with host range overall, fungi have the narrowest host range but are the most widely dispersed group. The global dispersal of some pests has been rapid, but pest assemblages remain strongly regionalized and follow the distributions of their hosts. Pest assemblages are significantly correlated with socioeconomics, climate and latitude. Tropical staple crops, with restricted latitudinal ranges, tend to be more saturated with pests and pathogens than temperate staples with broad latitudinal ranges. We list the pests likely to be the most invasive in coming years. Main conclusions: Despite ongoing dispersal of crop pests and pathogens, the degree of biotic homogenization of the globe remains moderate and regionally constrained, but is growing. Fungal pathogens lead the global invasion of agriculture, despite their more restricted host range. Climate change is likely to influence future distributions. Improved surveillance would reveal greater levels of invasion, particularly in developing countries. © 2014 John Wiley & Sons Ltd.BBSR

    Economic and physical determinants of the global distributions of crop pests and pathogens.

    Get PDF
    © 2014 The Authors. New Phytologist © 2014 New Phytologist Trust.Crop pests and pathogens pose a significant and growing threat to food security, but their geographical distributions are poorly understood. We present a global analysis of pest and pathogen distributions, to determine the roles of socioeconomic and biophysical factors in determining pest diversity, controlling for variation in observational capacity among countries. Known distributions of 1901 pests and pathogens were obtained from CABI. Linear models were used to partition the variation in pest species per country amongst predictors. Reported pest numbers increased with per capita gross domestic product (GDP), research expenditure and research capacity, and the influence of economics was greater in micro-organisms than in arthropods. Total crop production and crop diversity were the strongest physical predictors of pest numbers per country, but trade and tourism were insignificant once other factors were controlled. Islands reported more pests than mainland countries, but no latitudinal gradient in species richness was evident. Country wealth is likely to be a strong indicator of observational capacity, not just trade flow, as has been interpreted in invasive species studies. If every country had US levels of per capita GDP, then 205 ± 9 additional pests per country would be reported, suggesting that enhanced investment in pest observations will reveal the hidden threat of crop pests and pathogens.BBSR

    PPI Questionnaire on Adaptive Wearable Appropriateness as an Autistic Intervention

    Get PDF
    Autism Spectrum Condition (ASC) is a life-long diagnosis, which has a subset of features including hyper-, seeking- and/or hypo-reactivity to sensory inputs or unusual interests (APA, 2013). These qualities are evident across environmental (e.g. response to specific sounds, visual fascination with lights or movements) and physiological domains (e.g. anxiety, respiration or euthermia). Scholars report that ninety (90%) of autistic adults experience sensory issues causing significant barriers at school/work (Leekam et al., 2007). As part of a larger PhD Research Project, this pilot study establishes designs, processes and measures that may establish if autistic individuals find value utilising adaptive/wearable interventions that possibly alter, redirect and/or attenuate disruptive stimuli. This study incorporates benign information not yet containing practical data, other than to provision and trial space where real data is nominally present. This pilot loads systems functionality for future use (e.g. consent, demographic collection, measures, post-mortem/survey feedback, storage, sorting, query, statistical analyses and reporting). Finally, this pilot provisions a follow-on and full-fledge Participant Public Involvement (PPI) designed to exploit data from focus group and co-produced surveys/designs. In turn, these may be used to inform an as-yet-to-be developed interventional prototype. Hence, the forthcoming PPI—by leveraging this pilot—aims to describe what degree sensory distractions occur among adolescent and adult ASC participants. Both pilot and PPI aspire to whether focus, anxiety and attentional concerns are perceived as negative issues and if individuals prefer assistance (vis à vis assistive wearables) to reduce anxiety, distractions and increase focus at school and at work (Bagley et al., 2016). This study results yield promise; in that, a subsequent PPI can be leveraged to obtain co-designed autistic data leading to a randomised clinical trial

    Sound Impairment Effect on Cognitive Skill Performance

    Get PDF
    Autism Spectrum Condition (ASC) is a life-long diagnosis, which has a subset of individualized characteristics consisting of hyper-, seeking- and/or hypo-reactivity to sensory inputs or unusual interests (APA, 2013). These sensitivities are evident in both environmental (e.g. apparent response to specific sounds, visual fascination with lights or movements) and physiological domains (e.g. anxiety, respiration or euthermia). As part of a larger PhD Research Project (SensorAble), this pilot study proposes that autistic individuals who exhibit greater distractibility and reduced focus/attention resulting stimuli may benefit from interventions that alter, redirect and/or attenuate stimuli. In particular, Irrelevant-Sound Effect (ISE) consisting of un-targeted and/or modulated sonics cause greater disruption of performance of simultaneous and visual simple tasks compared to baseline ISE that are merely directed. Using gold-standard Stroop experiments, data collected among neurotypical (NT) and ASC individuals at baseline and at various ISE modes result in greater reaction time (RT) improvements among ASC than NT participants. In this study, which focuses on aural distractibility only, data supports that signal processing may provide a gateway to enhancing focus and attention while reduce distractibility and anxiety in other domains

    Comparison of embedded and added motor imagery training in patients after stroke: Results of a randomised controlled pilot trial

    Get PDF
    Copyright @ 2012 Schuster et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Motor imagery (MI) when combined with physiotherapy can offer functional benefits after stroke. Two MI integration strategies exist: added and embedded MI. Both approaches were compared when learning a complex motor task (MT): ‘Going down, laying on the floor, and getting up again’. Methods: Outpatients after first stroke participated in a single-blinded, randomised controlled trial with MI embedded into physiotherapy (EG1), MI added to physiotherapy (EG2), and a control group (CG). All groups participated in six physiotherapy sessions. Primary study outcome was time (sec) to perform the motor task at pre and post-intervention. Secondary outcomes: level of help needed, stages of MT-completion, independence, balance, fear of falling (FOF), MI ability. Data were collected four times: twice during one week baseline phase (BL, T0), following the two week intervention (T1), after a two week follow-up (FU). Analysis of variance was performed. Results: Thirty nine outpatients were included (12 females, age: 63.4 ± 10 years; time since stroke: 3.5 ± 2 years; 29 with an ischemic event). All were able to complete the motor task using the standardised 7-step procedure and reduced FOF at T0, T1, and FU. Times to perform the MT at baseline were 44.2 ± 22s, 64.6 ± 50s, and 118.3 ± 93s for EG1 (N = 13), EG2 (N = 12), and CG (N = 14). All groups showed significant improvement in time to complete the MT (p < 0.001) and degree of help needed to perform the task: minimal assistance to supervision (CG) and independent performance (EG1+2). No between group differences were found. Only EG1 demonstrated changes in MI ability over time with the visual indicator increasing from T0 to T1 and decreasing from T1 to FU. The kinaesthetic indicator increased from T1 to FU. Patients indicated to value the MI training and continued using MI for other difficult-to-perform tasks. Conclusions: Embedded or added MI training combined with physiotherapy seem to be feasible and benefi-cial to learn the MT with emphasis on getting up independently. Based on their baseline level CG had the highest potential to improve outcomes. A patient study with 35 patients per group could give a conclusive answer of a superior MI integration strategy.The research project was partially funded by the Gottfried und Julia Bangerter-Rhyner Foundation

    Efficacy of nonselective optogenetic control of the medial septum over hippocampal oscillations: the influence of speed and implications for cognitive enhancement

    Get PDF
    Optogenetics holds great promise for both the dissection of neural circuits and the evaluation of theories centered on the temporal organizing properties of oscillations that underpin cognition. To date, no studies have examined the efficacy of optogenetic stimulation for altering hippocampal oscillations in freely moving wild-type rats, or how these alterations would affect performance on behavioral tasks. Here, we used an AAV virus to express ChR2 in the medial septum (MS) of wild-type rats, and optically stimulated septal neurons at 6 Hz and 30 Hz. We measured the corresponding effects of these stimulations on the oscillations of the MS and hippocampal subfields CA1 and CA3 in three different contexts: (1) With minimal movement while the rats sat in a confined chamber; (2) Explored a novel open field; and (3) Learned and performed a T-maze behavioral task. While control yellow light stimulation did not affect oscillations, 6-Hz blue light septal stimulations altered hippocampal theta oscillations in a manner that depended on the animal's mobility and speed. While the 30 Hz blue light septal stimulations only altered theta frequency in CA1 while the rat had limited mobility, it robustly increased the amplitude of hippocampal signals at 30 Hz in both regions in all three recording contexts. We found that animals were more likely to make a correct choice during Day 1 of T-maze training during both MS stimulation protocols than during control stimulation, and that improved performance was independent of theta frequency alterations

    Experimental determination of the temperature dependence of oxygen-isotope fractionation between water and chitinous head capsules of chironomid larvae

    Get PDF
    Oxygen-isotope values of invertebrate cuticle preserved in lake sediments have been used in palaeoenvironmental reconstructions, generally with the assumption that fractionation of oxygen isotopes between cuticle and water (\upalpha_{\text{cuticle}-\text{H}_{2}\text{O}}) is independent of temperature. We cultured chironomid larvae in the laboratory with labelled oxygen-isotope water and across a range of closely controlled temperatures from 5 to 25 °C in order to test the hypothesis that fractionation of oxygen isotopes between chironomid head capsules and water (\upalpha_{\text{chironomid}-\text{H}_{2}\text{O}}) is independent of temperature. Results indicate that the hypothesis can be rejected, and that \upalpha_{\text{chironomid}-\text{H}_{2}\text{O}} decreases with increasing temperature. The scatter in the data suggests that further experiments are needed to verify the relationship. However, these results indicate that temperature-dependence of \upalpha_{\text{chironomid}-\text{H}_{2}\text{O}} should be considered when chironomid Ύ18O is used as a paleoenvironmental proxy, especially in cases where data from chironomids are combined with oxygen-isotope values from other materials for which fractionation is temperature dependent, such as calcite, in order to derive reconstructions of past water temperature
    • 

    corecore