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Summary

� Crop pests and pathogens pose a significant and growing threat to food security, but their

geographical distributions are poorly understood. We present a global analysis of pest and

pathogen distributions, to determine the roles of socioeconomic and biophysical factors in

determining pest diversity, controlling for variation in observational capacity among countries.
� Known distributions of 1901 pests and pathogens were obtained from CABI. Linear models

were used to partition the variation in pest species per country amongst predictors.
� Reported pest numbers increased with per capita gross domestic product (GDP), research

expenditure and research capacity, and the influence of economics was greater in micro-

organisms than in arthropods. Total crop production and crop diversity were the strongest

physical predictors of pest numbers per country, but trade and tourism were insignificant once

other factors were controlled. Islands reported more pests than mainland countries, but no

latitudinal gradient in species richness was evident.
� Country wealth is likely to be a strong indicator of observational capacity, not just trade

flow, as has been interpreted in invasive species studies. If every country had US levels of per

capita GDP, then 205� 9 additional pests per country would be reported, suggesting that

enhanced investment in pest observations will reveal the hidden threat of crop pests and

pathogens.

Introduction

Crop pests and pathogens pose a significant threat to global food
security (Strange & Scott, 2005; Flood, 2010; Fisher et al.,
2012). Around one sixth of the world’s agricultural production
is lost to destructive organisms annually, with further losses
post-harvest (Oerke, 2006; Flood, 2010). Thousands of species,
pathovars and genotypes of viruses, bacteria, fungi, oomycetes,
nematodes and insects have evolved and spread to plague farmers
since the dawn of agriculture, and both natural and anthropo-
genic dispersal continually introduce pests into new territories
(Anderson et al., 2004; Strange & Scott, 2005; Stukenbrock &
McDonald, 2008; Bebber et al., 2013). Tracking the movement
of pests around the world is a key endeavour in plant protection
(Miller et al., 2009). The presence of a particular pest or patho-
gen in a country is likely to depend upon numerous, sometimes
idiosyncratic, biophysical and socioeconomic factors (Waage &
Mumford, 2008; Shaw & Osborne, 2011), leading some
researchers to conclude that efforts to identify general patterns of
distribution and spread are likely to be futile (Shaw & Osborne,
2011). Although the relative importance of different pest dis-
persal modes at large scales has been investigated (Brown &
Hovmøller, 2002; Anderson et al., 2004), a description of the
global distributions of pest species and an analysis of potential
drivers is lacking.

Comparison with the biogeographical patterns and processes
of other species assemblages may be informative. Major global
patterns of native (or ‘wild’) species distributions, such as reduced
species richness at high latitudes (Hawkins et al., 2003; Willig
et al., 2003; Krug et al., 2009) and on small, isolated islands
(Whittaker & Fern�andez-Palacios, 2007), are driven by natural
spatiotemporal variation in climate, water and energy availability,
habitat area and disturbance regimes, and by processes of evolu-
tion, immigration and extinction that determine where species
emerge, which suitable environments they colonize, and where
they are able to persist (Gaston & Blackburn, 2000). Crop pests,
by contrast, are often introduced by human activities such as
trade and travel (Anderson et al., 2004; Fisher et al., 2012), as
well as by natural dispersal (Brown & Hovmøller, 2002; Ander-
son et al., 2004) and are, by definition, organisms dependent
upon plants that have, themselves, been widely distributed by
humans. Crop pests may therefore follow similar distributional
patterns to invasive species in general, as invasive species are
largely introduced to new regions through human activities such
as trade (Westphal et al., 2008; Hulme, 2009; Py�sek et al., 2010;
Essl et al., 2011; Seebens et al., 2013). Thus, the extensive biolog-
ical invasions literature may indicate the patterns and processes
governing crop pest distributions.

In contrast to native species, invasive species appear to be more
prevalent on islands (Hulme, 2009), although this has been
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disputed (Westphal et al., 2008; Diez et al., 2009). Outside the
tropics, invasive species richness decreases with latitude, but few
invasive species appear to have established within the tropics (Sax,
2001). Socioeconomic drivers, particularly measures of wealth,
have been recognized recently as an important determinant of the
number of invasive species recorded in a country (Taylor &
Irwin, 2004; Py�sek et al., 2010; Essl et al., 2011). This is thought
to be because country wealth is strongly linked to historical trade,
so that countries that have grown rich through trade have also
accidentally imported species in agricultural produce, and
because activities of wealthy countries such as horticulture and
pet-keeping deliberately introduce exotic species (Hulme, 2009;
Py�sek et al., 2010; Essl et al., 2011). The role of wealth can be
large enough to overshadow biophysical factors such as habitat
availability and climate (Py�sek et al., 2010).

Although wealth has been exclusively interpreted as an indica-
tor of increased propagule pressure, another explanation is possi-
ble. There exists a strong observational bias in the invasion
literature; for example, a recent review found that more than
three quarters of studies were conducted in the developed regions
of North America, Europe and Australasia (Py�sek et al., 2008).
Subsequent investigations of both invasive species in general, and
crop pests in particular, have also been largely limited to these
regions (Paini et al., 2010; Py�sek et al., 2010; Essl et al., 2011).
By contrast, the tropics and developing world have been ignored,
probably because of an implicit assumption that knowledge of
invasive species assemblages in these regions is poor (but see, for
example, Waage et al., 2008). Given that inadequate sampling of
tropical biota has also been recognized for native species (Yesson
et al., 2007; Boakes et al., 2010; Feeley & Silman, 2011), that
economic indicators such as gross domestic product (GDP) are
correlated with scientific and technical capacity (Furman et al.,
2002) and that wealth generally increases with latitude (Kummu
& Varis, 2011), it is reasonable to assume that the role of wealth
in predicting numbers of invasive species and pests per country
is, at least in part, related to variation in the ability of a given
country to detect, identify and report the presence of invasive
species. Simply put, it would be surprising if a developing nation
such as Uganda had a better understanding of its invasive species
burden than a wealthy, technologically advanced nation such as
the USA. The competing hypotheses of trade and observational
capacity have been termed the ‘biological’ and ‘institutional’
hypotheses, respectively (Waage et al., 2008).

Here, we analyse a comprehensive database of the known dis-
tributions of 1901 crop pests in 195 countries, totalling 60 907
observations, and partition the variance in observed pest num-
bers per country amongst physical, biological and socioeco-
nomic drivers. We attempt to differentiate between the
competing hypotheses of trade and observational capacity by
comparing the effects of wealth on reports of taxonomic groups
of pests likely to vary in their conspicuousness and ease of iden-
tification. For example, insects are relatively easy to see and
identify, whereas viruses may appear similar to abiotic stress and
require molecular diagnostics for identification, and therefore
increasing wealth should have a greater influence on virus than
insect detection. We then project how changes in countries’

wealth, through economic development, would likely influence
the numbers of pests reported, and, if any effects of wealth are
actually surrogates for observational capacity, suggest the num-
bers of pests already present that have not yet been discovered.

Materials and Methods

Distributional data for 1901 crop pests and pathogens (collec-
tively termed ‘pests’) were obtained with permission from the
Plantwise database, compiled by the organization CABI (2013).
The Plantwise database comprises geographical data from the
CABI Crop Protection Compendium (CPC), and the Distribu-
tion Maps of Plant Pests (DMPP) and Distribution Maps of
Plant Diseases (DMPD) compiled by CABI and EPPO
(Pasiecznik et al., 2005), and other minor sources. Pests are
selected for inclusion by phytosanitary experts because of their
global or regional economic significance. DMPP and DMPD
data have been compiled by computerized search of millions of
abstracts in the scientific and grey literature (with consultation of
full sources as required), followed by expert validation of pest
presences with preference given to primary sources (Pasiecznik
et al., 2005). The CPC is a recent initiative, supported by over 40
technical, governmental, private-sector and nongovernmental
partners, which utilizes similar standards for compiling and vali-
dating data, but includes additional data from sources such as the
EPPO Pest Quarantine Register (PQR) and International Plant
Protection Convention (IPPC) Official Pest Reports. The data-
base is curated to retain only those records for which presence
and correct identification of a pest can be assured with high confi-
dence, supported by published sources. Presences are noted as
widespread, restricted, rare or confined, where such information
is available. We included all presences in our analysis, because in
most instances abundance data were unavailable. The Plantwise
database is the most comprehensive global database on crop pest
distributions available, subsets of which have been used recently
in national (Paini et al., 2010) and global (Bebber et al., 2013)
analyses of pest distributions. The data are therefore likely to be
suitable for a global analysis of observed pest distributions.

Records of pest presence in countries were available for, in
order of number of species and pathovars: Fungi (419 species
and pathovars), Coleoptera (219), Lepidoptera (252), Hemiptera
(236), viruses (230), Bacteria (126), Nematoda (104), Diptera
(110), Hymenoptera (26), Oomycota (59), Acari (55), Thysa-
noptera (34), and smaller numbers of Orthoptera, Isoptera,
Gastropoda, various protists, Psocoptera, Neuroptera and Col-
lembola. We list these groupings (which represent different taxo-
nomic levels) for illustrative purposes. There were 60 907 records
at national level.

Crop production and import data for 168 crops were obtained
at national level for the decade 2001–2010 from the UN FAO
(2013). For import, only unprocessed (fresh) crops were included
in the analysis, as these are more likely to harbour living pests.
The top 20 crops by mean annual production weight were (in
decreasing order) sugar cane, maize, rice, wheat, potatoes, sugar
beet, minor fresh vegetables, soybeans, cassava, oil palm fruit,
barley, tomatoes, sweet potatoes, watermelons, bananas, cabbages

New Phytologist (2014) � 2014 The Authors
New Phytologist � 2014 New Phytologist Trust.www.newphytologist.com

Research

New
Phytologist2



and brassicas, grapes, onions, cotton seed and oranges. These 20
account for 81.5% of the total mean production weight.

Crop production data were used to calculate diversity indices
of production. Diversity indices use population size estimates
for the species in a community (Magurran, 2004), so in this
case a pseudo-population size for each crop ‘species’ was derived
from the mass of each crop produced, rounded to the nearest
tonne. The commonly used Shannon index, and the rarefaction
species richness (Hurlbert, 1971) for 1000-tonne samples, were
calculated from recent average production of each crop in each
country.

Two measures of country wealth were compared as predictors,
mean per capita GDP from 2001 to 2010, and total wealth in
2005. Per capita GDP is correlated with scientific and technical
capacity (Furman et al., 2002) and has been used as a wealth indi-
cator in previous studies of invasive species distributions (Taylor
& Irwin, 2004; Essl et al., 2011). However, the measure has been
criticized in that it provides only a recent ‘snap-shot’ of a coun-
try’s wealth rather than a long-term integration, and total wealth
has been used as an aggregate of economic performance (Py�sek
et al., 2010). A disadvantage of total wealth is that estimates are
available for only 152 countries, compared with 226 for per
capita GDP. Per capita GDP (based on purchasing power parity)
and total wealth data were obtained from the World Bank (2013)
and IMF (2013). Mean expenditure on research and develop-
ment (R&D) as a fraction of total GDP was included as another
measure of scientific and technical capacity (data from World
Bank, 2013). Several developing countries do not report R&D
expenditure, and it was assumed that real expenditure was essen-
tially zero. Because country wealth drives scientific and techno-
logical development, a direct measure of scientific output was
also modelled. The number of scientific documents published
per country in the fields of agriculture and biological sciences
between 1996 and 2012 was obtained from the SCImago Journal
& Country Rank database (Scimago Lab, 2013). We fitted
models both including and excluding publication number, to
determine the ultimate effects of economic variables and the
proximate effects of scientific output on observed pest numbers.

The absolute latitude of the geographical centre of each coun-
try and its status – island, coastal or landlocked – were included
as predictors. Because CABI historically supported agriculture in
the Commonwealth, membership (historical and current) of the
Commonwealth was also included. Nonagricultural transport
was estimated by mean international tourist numbers per year,
obtained from the World Bank (2013). Mean annual (1961–
1990) precipitation was obtained from the TYN CY 1.1 dataset
(Mitchell et al., 2004). While latitude is an indicator of mean
annual temperature and seasonality, mean annual precipitation is
only moderately correlated with latitude (Supporting Informa-
tion Table S1, Spearman’s r =�0.54) and moisture could affect
pest incidence independently of temperature. Spatial autocorrela-
tion, due to the potential for spread of pests from neighbouring
countries, was modelled for each country by the sum of unique
pests for all countries sharing a land border.

The variance in numbers of pests per country was partitioned
amongst biological, physical and socioeconomic predictors using

linear models. Exploratory analysis using Generalized Additive
Models indicated that nonlinear modelling was not required for
the data (Figs S1, S2). The numbers of pests per country are
count data, so square roots were taken when fitting the linear
model to remove any dependence of the variance on the mean.
Residuals were inspected for outliers and data with high leverage,
and tested vs Normality using the Shapiro–Wilk test (Figs S3,
S4).

Two models were fitted, differing by the inclusion of scientific
publication number as a predictor. Model 1 was

p
pests � log gdpð Þ þ log wlthð Þ þ res þ cw þ log areað Þ
þ log prodð Þ þ div þ log impð Þ þ log tourð Þ þ lat þ prec
þ geog þ neig

(pests, total number of reported pests per country; gdp, mean per
capita GDP from 2001 to 2010; wlth, wealth in 2005; res, mean
expenditure on research and development as a percentage of
national GDP 2000–2009; cw, membership (past or current) of
the Commonwealth; area, total land area of the country; prod,
mean mass of crop production 2001–2010; div, a diversity index
(either Shannon or the rarefaction species richness); tour, mean
mass of agricultural imports of selected crops 2001–2010; tour,
mean number of tourist visitors 2001–2010; lat, absolute lati-
tude of the country centroid; prec, mean annual precipitation
1961–1990; geog, a geographical classification of a country as
island, coastal or landlocked; and neig, total number of unique
pests in neighbouring (shared land border) countries). Polynomi-
als were fitted where this was indicated by exploratory plots.
Three plausible interactions between predictors were tested:
gdp9 res because wealth should only influence observational
capacity if some of that wealth is spent on research; lat9 prec
because, for example, warm, humid conditions could have differ-
ent effects on pests than warm, dry conditions; and gdp9 geog
because exploratory analysis indicated that the number of pests
per tonne of production increased more rapidly with gdp for
islands than other geographical classes. Model 2 was fitted with
the logarithm of the number of scientific publications (sci) as the
first predictor.

Variables thought to be related to observational capability
(sci, gdp, wlth, res and cw) were entered into the model first, so
that F-tests on sequential sums-of-squares would test for the
effect of physical variables (area, prod, div, imp, tour, prec, geog,
lat and neig) only once variables that could indicate observa-
tional capacity had been taken into account. The model fit was
examined to determine nonlinearity of responses and models
with and without nonsignificant predictors were compared
using an automated stepwise model selection procedure based
on the Akaike Information Criterion, in order to determine the
most appropriate model for the data (Venables & Ripley, 2002,
p. 175). Residuals of fitted models were inspected for normality
and leverage, and models re-fitted omitting outliers or countries
with high leverage to determine their effect on the results
(Tables S2,S3). No evidence of spatial autocorrelation in residu-
als was found (Fig. S5).
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The competing trade (or ‘biological’) and observation (or
‘institutional’) hypotheses for the correlation of economic indica-
tors with observed pest numbers per country could be differenti-
ated by considering the likely ease of identification of different
taxonomic pest groupings. Insects and other arthropods are likely
to be the easiest groups both to detect and identify, normally
requiring inspection of anatomical characters using the naked
eye, a hand lens or microscope. For these organisms, even poorer
countries are likely to have entomologists and taxonomists able
to identify them, and the influence of per capita GDP and R&D
expenditure on detection should be low. By contrast, microor-
ganisms including fungi, bacteria, oomycetes and viruses, and
soil-borne organisms such as nematodes, are harder to detect and
often require modern molecular methods for positive identifica-
tion. The availability of these techniques is likely to increase with
wealth, and therefore the effect of wealth on the detection of
microorganisms should be stronger than for arthropods. Con-
versely, if the effect of economic indicators is driven by historical
trade, then there should be no difference among taxonomic
groups in the effect, as there is no a priori reason to suspect that
propagule pressure should increase at different rates with trade
among the different taxonomic groups. To test these alternative
hypotheses, Model 1 predictors were fitted for numbers of pests
in different taxonomic groups, divided by the total number of
pests in these groups, thereby giving the relative influence of
economic factors to allow comparison among groups.

All analyses were conducted in R v3.0.1 (R Development Core
Team, 2013). The function stepAIC in the package MASS was
used for stepwise model selection. Maps were produced using the
package rworldmap, and plots were produced using the packages
lattice and latticeExtra.

Results

Countries reported between 1 and 1200 pests (Fig. S6), with the
largest numbers reported by the USA (1200), India (1063),
China (1012), France (999) and Japan (973). The most wide-
spread pests, in terms of number of countries in which they are
found, were Bemisia tabaci (Insecta, present in 156 countries),
Aphis gossypii (Insecta, 153 countries), Planococcus citri (Insecta,
143 countries), Meloidogyne incognita (Nematoda, 143 coun-
tries), Agrius convolvuli (Insecta, 141 countries), Plutella xylostella
(Insecta, 138 countries), Helicoverpa armigera (Insecta, 135),
Myzus persicae (Insecta, 133 countries), Guignardia citricarpa
(Ascomycota, 131 countries), Pseudocercospora angolensis
(Ascomycota, 131 countries) and Nizara viridula (Insecta, 131).
Eight of these are insects. The numbers of pests in major func-
tional groups (invertebrates, fungi and oomycetes, bacteria,
viruses, nematoda and protozoans) were highly correlated (the
first axis of a Principal Components Analysis on the square root
of pest numbers in different classes explained 92.7% of variance
among countries), that is countries with many fungal pests also
have many viruses, etc.

Automated model selection for Model 1 determined that total
wealth was the strongest predictor of observed pest numbers,
explaining 71.2% of variance among countries, compared with

3.6% for per capita GDP when the latter was used as the wealth
indicator. However, total wealth is highly correlated with country
area and agricultural production (Table S1), and is therefore con-
founded with indicators of habitat area. By contrast, per capita
GDP is weakly negatively correlated with area and production,
whilst being positively correlated with wealth. Under the assump-
tion that a country’s wealth is, in part, based upon sovereign
natural resources whose availability increases with land area,
wealth per unit area and per capita GDP were compared as
predictors. In this case, per capita GDP was retained in preference
to wealth per unit area, demonstrating that, once confounding
variables are controlled, per capita GDP is a better predictor of
observed pest numbers than total wealth.

In the final Model 1, using per capita GDP as the economic
variable, the number of pests per country increased with per
capita GDP, total crop production, expenditure on R&D, mem-
bership of the Commonwealth, precipitation and one measure of
crop diversity, namely rarefaction species richness (Table 1).
Crop production was the most important predictor (Fig. 1).
Country area, tourism, total crop imports, absolute latitude and
the number of pests in neighbouring countries were dropped
from the model. No significant interactions were detected. Pro-
duction was highly correlated with both land area and crop
imports (Table S1), that is, large countries produce more food
but also import more and, therefore, area and imports provided
no additional information on observed pest numbers. Island
nations reported more pests than coastal and landlocked nations
(Table 1, Fig. 2), and the number of pests increased slightly with
precipitation. Model 1 explained 86.9% of variance in observed
pest numbers. Removal of outliers and influential data points had
little effect on the model (Tables S2,S3).

Automated model selection for Model 2 found that the num-
ber of scientific publications in agriculture and biological sciences
was the most important predictor (R2 = 72.8%), followed by total
crop production (Table 2, Fig. 3). R&D expenditure was not a
significant predictor in Model 2. More science is published by
large, wealthy countries that spend more on research, and also
have greater agricultural production, crop diversity, crop imports
and tourism (Table S1). The fractions of variance explained by
Model 1 and Model 2 were approximately equal, and the pre-
dicted numbers of pests from the two models were highly corre-
lated (r = 0.98). Further analyses utilize Model 1, because the
number of scientific publications is likely to be determined by
ultimate causes such as country size, economic performance and
expenditure on research.

The statistical requirements for transformations in the
response and predictor variables make the model results rather
cumbersome to interpret numerically, and therefore some exam-
ples of expected numbers of pests are given to illustrate the effects
of varying production, per capita GDP and R&D expenditure.
We take Myanmar as an example, given recent social changes that
could yield rapid economic development. Myanmar is a coastal
country with high amounts of agricultural production (mean
52 million tonnes, of which 54% is rice), but low per capita GDP
(mean US $904 per annum, 2001–2010) and low investment in
R&D (mean 0.11%). Three hundred and fifty-nine crop pests
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have been reported from Myanmar, with 362 (95% Confidence
Limits 326–400) expected by the model. If a country such as the
USA, with very high GDP (US $42 476 per annum) and high
expenditure on R&D (2.64%), is effectively able to detect and
report all of its crop pests, then the potential total number of
agricultural pests in Myanmar can be estimated by fitting the
model for Myanmar, but with US levels of GDP and R&D
spending. This total is 723 (95% CI 657–793): thus, only
around half of the possible total pest burden has been reported, if
per capita GDP and R&D are solely indicative of observational
capacity (Fig. 4). If GDP solely indicates invasion pressure, then
realistic estimates of future GDP can indicate likely changes in
pest numbers as a result. Myanmar could triple its per capita
GDP by 2030 (Asian Development Bank, 2013), which would

lead to a mean of 25 additional pests, in the absence of changes
in other predictors.

The model was used to predict the total number of pests
expected in every country, if per capita GDP indicates observa-
tional capacity, and if the economic and technical power of the
USA were available globally (Fig. S7). This resulted in a mean of
205� 9 additional pests expected per country (Fig. 5, Table S3).
China (95% CI 1289–1552), India (1274–1538), Indonesia
(1041–1274), the USA (1034–1228) and Brazil (1002–1222)
have the largest expected number of pests. Given their high GDP

Table 1 Model 1 of the square root of pest numbers per country, with per capita gross domestic product (GDP) as economic indicator

Predictor Coefficient Sum Sq. df Mean Sq. R2 F P

log10(gdp) 1.34� 0.47 296.3 1 296.3 3.4 48.0 < 10�10

res 3.69� 0.67 3111.3 2 1555.7 35.8 251.9 < 10�15

res2 �0.56� 0.16
cw 1.8� 0.43 92.1 1 92.1 1.1 14.9 0.0002
log10(prod) �1.82� 0.95 3636.7 2 1818.3 41.9 294.4 < 10�15

log10(prod)
2 0.46� 0.08

diva 0.12� 0.02 151.3 1 151.3 1.7 24.5 < 10�5

precb 0.67� 0.25 149.7 1 149.7 1.7 24.2 < 10�5

geog NA 111.9 2 56.0 1.3 9.1 0.0002
Coastalc �3.76� 3.66
Island-Costal 2.10� 0.57
Landlocked-Costal �0.68� 0.50
Error NA 1136.4 184 6.18 13.1 NA NA
Model total NA 7549.4 10 754.9 86.9 122.2 < 10�15

Total NA 8685.8 194 NA 100.0 NA NA

NA, not applicable.
Terms selected automatically using AIC. Terms are defined in the Materials and Methods section. Mean is the estimated coefficient. The sums of squares,
degrees of freedom, mean square, coefficient of determination (R2), and F-tests are given for analysis of variance. Total model R2 = 86.9%.
aRarefaction species richness.
bPrecipitation in metres (not mm) to scale coefficient for presentation.
cThe coefficient for Coastal nations is the intercept, that is coefficients for Island and Landlocked nations should be added to this when calculating expected
values.
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and investment in research, developed nations in North America,
Australasia and Western Europe were not expected to report
many more pests. Indeed, Switzerland, France, the Netherlands
and Japan have reported significantly more pests than the upper
95% confidence limit expected by the model under US-level per
capita GDP and R&D. By contrast, many developing countries
have reported far fewer pests than expected.

Scaling pest numbers by the total number of pests in each cate-
gory to allow comparisons, the effect of per capita GDP on the
fraction of all arthropods detected was less than half of the effect
on micro-organisms, and the fraction of variance in arthropod
numbers explained by per capita GDP was less than half of that
explained in micro-organism numbers (Table 3). The effect of
R&D was lowest for arthropods, but the fraction of variance
explained was similar in arthropods, bacteria, fungi and oomyce-
tes, and nematodes, but was larger for viruses.

Discussion

This study provides the first global assessment of the factors
determining the known distributions of the world’s crop pests
and pathogens, covering 1901 crop-destroying organisms, and
quantifying the influence of both socioeconomic and biophysical
factors on our knowledge of pest distributions. Global patterns of
pest species distributions differ significantly from wild species in
being more diverse on islands but showing no latitudinal gradi-
ent, and are therefore similar to patterns detected for invasive spe-
cies in general. The fraction of variance in pest diversity
explained by the model is similar to that explained by land area

Table 2 Model 2 of the square root of pest numbers per country, with log10 of number of scientific publications in agriculture and biological sciences as
indicator of scientific capacity, and per capita gross domestic product (GDP) as economic indicator

Predictor Mean Sum Sq. df Mean Sq. R2 F P

log10(sci + 1) �0.084� 0.70 6469.5 2 6469.5 75.2 644.1 < 10�4

log10(sci + 1)2 �0.55� 0.11
cw 1.34� 0.38 96.9 1 96.9 1.1 19.3 < 10�4

log10(prod) �0.83� 1.05 744.3 2 372.2 8.7 74.1 < 10�4

log10(prod)
2 0.24� 0.09

diva 0.10� 0.02 98.2 1 98.2 1.1 19.6 < 10�4

precb 0.90� 0.22 180.0 1 180.0 2.1 35.9 < 10�4

geog NA 63.9 2 32.0 0.7 6.4 0.0021
Coastal 0.96� 3.02
Island-Coastal 1.76� 0.51
Landlocked-Coastal �0.03� 0.44
Error NA 949.2 189 5.0 11.0 NA NA
Model total NA 7652.8 9 850.3 89.0 134.0 < 10�4

Total NA 8602.0 198 NA 100.0 NA NA

Terms are defined in the Materials and Methods section. NA, not applicable.
Total model R2 = 89.0%.
aRarefaction species richness.
bPrecipitation in metres (not mm) to scale coefficient for presentation.
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Fig. 3 Observed pests vs scientific publications 1996–2012. Islands, pink
circles; coastal countries, blue squares; landlocked countries, green
triangles.
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Fig. 4 Effect of economic development on expected pest numbers
reported by Myanmar. (a) Expected mean (solid line) and 95% confidence
limits (dashed lines) for pest numbers vs per capita gross domestic product
(GDP), with the current Myanmar-level investment in research and
development (R&D) (0.11% of GDP). (b) Expected mean and 95%
confidence limits for pest numbers vs per capita GDP, with US-level
investment in R&D (2.64% of GDP). The circle in both panels shows the
current reported pest number (351) and per capita GDP (US$904) for
Myanmar.
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and climate variables for wild species diversity (Hawkins et al.,
2003; Kalmar & Currie, 2006). Comparison among pest taxo-
nomic groupings suggested that economic indicators such as per
capita GDP are likely to be indicators of observational capacity,
rather than solely indicators of trade. Assuming that per capita
GDP is an indicator of observational capacity, the pest load of
the developing world appears to be greatly underestimated, and
this lack of knowledge may be severely hampering crop protec-
tion in some of the world’s most important food-producing
nations (Miller et al., 2009; Flood, 2010; MacLeod et al., 2010).

Countries are likely to vary greatly in their ability to detect and
report pests. Model 2 demonstrated the importance of a proxi-
mate measure of scientific and technical capacity (publications in
agricultural and biological sciences) in determining the number
of pests recorded in the CABI databases. However, because the
invasive species literature has interpreted economic variables as a
measure of historical trade, and because economic status is an
important driver of scientific capacity, we analysed the role of per

capita GDP as a predictor of pest numbers. Because GDP
increases with latitude (at least in recent times), relatively fewer
species are reported from the tropics, an issue for other global
species distribution databases (Yesson et al., 2007; Boakes et al.,
2010; Feeley & Silman, 2011) and for invasive species (Py�sek
et al., 2008). Per capita GDP has been used in previous studies as
a measure of scientific and technical capacity (Furman et al.,
2002), supplemented here by estimates of the fraction of total
GDP invested in research and development. Modelling the influ-
ence of per capita GDP and R&D expenditure was used to con-
trol for this bias. In the biological invasions literature, GDP has
been interpreted as a correlate of transportation infrastructure
and trade, which facilitate invasions (but see Westphal et al.,
2008; Hulme, 2009). However, here the roles of habitat (crop
production) and trade (imports and tourism) were fitted inde-
pendently, and the role of GDP was therefore interpreted as an
indicator of pest-detection capacity.

Plant pathologists have advocated the need for investment in
pest monitoring and identification programmes (Miller et al.,
2009), but the effectiveness of expenditure on science has not
hitherto been quantified. The model allowed the likely total
numbers of pests, if countries had economies and technical capac-
ity similar to the USA, to be estimated. This revealed that highly
productive countries such as China, Brazil, India, Indonesia and
the Philippines, are likely to be harbouring hundreds more crop
pests than are currently known. These are growing economic
powers, and it may be that, with sufficient investment in research,
these missing pests will soon be revealed. Increasing numbers of
invasive species are also expected (Ding et al., 2008).

Total country wealth has been suggested as a better predictor
of invasive species distributions than per capita GDP, because
total wealth integrates long-term economic (and trade) activity
(Py�sek et al., 2010). However, total wealth is strongly correlated

−200 −150 −100 −50 0 50 100 150 200 250 300 350 400 450 500 550

Fig. 5 Expected additional number of pests per country. Expected numbers were predicted from the model, in which crop production and crop diversity
were held at current levels, but per capita gross domestic product (GDP) and investment in research and development (R&D) were set to current USA
levels. Grey shading denotes missing data for that country.

Table 3 Effect of economic indicators on the numbers of pests in different
taxonomic groups

Effect size R2

gdp res gdp res

Arthropoda 2.5� 1.0 2.9� 0.6 1.7 11.8
Bacteria 7.9� 1.6 3.5� 1.0 4.8 11.3
Fungi/Oomycota 6.8� 1.5 3.9� 1.0 3.5 12.7
Nematoda 5.2� 1.5 3.9� 1.0 3.6 11.1
Viruses 7.0� 1.3 4.9� 0.8 7.6 15.0

Terms are defined in the Materials and Methods section. Effect size is the
linear model coefficient for pest numbers scaled as a percentage of the
total number in the database. R2 is the coefficient of determination.
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with total country area, and is therefore inadequate as an indica-
tor of economic status unless appropriately scaled. Once wealth
was corrected for area, per capita GDP was found to be a better
predictor of pest presence. Additionally, the response of observed
pest numbers per country to per capita GDP was greater in
micro-organism pathogens compared with arthropod pests, sup-
porting the idea that taxonomists in poorer countries can identify
arthropods, but that greater technological capacity is required to
positively identify micro-organisms.

Controlling for the ability of countries to detect and report
pests enabled the effects of physical factors to be revealed. Crop
production is the most important determinant of pest numbers
per country. Production is analogous to the area of available habi-
tat, and countries with more ‘habitat’ therefore support more
pests, although it is possible that production also correlates with
investment in crop protection. This suggests that increasing pro-
duction will lead to greater numbers of pests. However, it must
be acknowledged that the model contains no temporal compo-
nent, and that model predictions are asymptotic values that say
nothing of the time it would take for increases in production, or
indeed GDP and investments in research, to influence the arrival
and establishment of new pests, or the time taken for any newly
trained plant pathologists to identify and report these new threats
(Crooks, 2005).

The influence of diversity in agricultural production was
equivocal, given that pest diversity increased with rarefaction spe-
cies richness, but not with the Shannon diversity index. The two
production diversity indicators are correlated (r = 0.77), so the
reason for the difference is unclear. Most of the regions with the
greatest crop diversity now (the Middle East, Mexico, Peru and
China) are those where many of the world’s crops were domesti-
cated (Purugganan & Fuller, 2009), demonstrating a long-term
persistence in the global distribution of crop diversity.

Greater pest reporting by island nations confirms some data
for invasive species (but see Westphal et al., 2008; Hulme,
2009). Island nations are generally smaller, wealthier, and invest
less in research, than coastal and landlocked countries (Figs S1,
S5). However, the effect of ‘islandness’ on pest detection is addi-
tional to these variables. Larger numbers of invasive species on
islands have been linked to the importance of trade for island
economies (Hulme, 2009), but islands do not import more
crops than mainland countries, for a given amount of crop pro-
duction (Fig. S2). This suggests that observational biases, rather
than real differences in numbers of pests, are responsible. One
possibility is that islands, some of which have been ravaged by
introduced species in the past, invest disproportionately more in
quarantine and customs than mainland nations, or are more
intensively studied by researchers. Whether this is the case, and
why coastal nations (which presumably also invest significantly
in customs controls) are not differentiated from landlocked
nations, is difficult to test empirically, given the lack of an
obvious ‘rigour metric’ – current or historical – of countries’
customs’ officials.

Unlike many wild species, pest diversity did not show a latitu-
dinal gradient, once latitudinal variation in factors such as per
capita GDP had been taken into account. Precipitation has a

significant, but weak, predictor of pest numbers. Numerous
hypotheses have been proposed to explain the latitudinal gradient
in species richness for natural ecosystems, including the greater
availability of energy and water at the equator, the greater stabil-
ity of the climate over short and long temporal scales, the larger
area of suitable habitat and the greater likelihood that species
ranges will overlap at the equator than at the poles (Hawkins
et al., 2003; Willig et al., 2003; Krug et al., 2009). If nonequilib-
rium mechanisms are important, whereby species diversity
declines with latitude because migration from the equator has
not yet taken place, then this could explain the lack of a latitudi-
nal gradient for pests, because pest migrations are facilitated by
human activities, thereby accelerating equilibration (Anderson
et al., 2004). If energy and water availability play a role, then the
enhanced production rates of modern, mechanized agriculture at
higher latitudes could support as many pests as are present in the
tropics, contrary to the natural pattern where water and energy
availability are greater at lower latitudes. Parasites and parasitoids
of animals do not show consistent latitudinal patterns (Willig
et al., 2003), and it could be that crop pests are similar to these
organisms in their responses.

Neither crop import volumes nor tourism are significant deter-
minants of pest numbers, although human transport has been
implicated in the spread of crop pests (Anderson et al., 2004;
Waage & Mumford, 2008) and invasive species (Westphal et al.,
2008). Because crop imports are highly correlated with crop pro-
duction (perhaps counter-intuitively, countries that produce
more food also import more food), any variation in pest diversity
due to imports may be masked by including production in the
model. A detailed analysis of trade matrices, investigating the
potential movement of pests from exporter to importer countries
for particular crops and their pests, could better reveal the role of
trade.

This study presents the first comprehensive analysis of the
global distributions of crop pests and pathogens, taking a
synoptic approach to the total diversity of pests found in each
country, and the physical and socioeconomic factors that influ-
ence this diversity. The role of economic factors, although simi-
lar to that found for other invasive species, has been
interpreted as an observational bias, rather than an effect of
trade. Partitioning the influence of these two drivers will
require further study. The next step will be to undertake a
more mechanistic analysis linking the known biology of pests
(specifically, their host preferences) with the distributions of
the crops, in order to determine how distributions vary among
pest taxa and host plants, and whether the presence of individ-
ual pest species can be inferred in countries which have not
reported occurrence.
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Fig. S1 Smooth terms from Generalized Additive Model, for
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Fig. S2 Smooth terms from Generalized Additive Model, for
covariates in the final version of Model 2.
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