135 research outputs found

    In Vitro Primary-Indirect Genotoxicity in Bronchial Epithelial Cells Promoted by Industrially Relevant Few-Layer Graphene

    Get PDF
    Few-layer graphene (FLG) has garnered much interest owing to applications in hydrogen storage and reinforced nanocomposites. Consequently, these engineered nanomaterials (ENMs) are in high demand, increasing occupational exposure. This investigation seeks to assess the inhalation hazard of industrially relevant FLG engineered with: (i) no surface functional groups (neutral), (ii) amine, and (iii) carboxyl group functionalization. A monoculture of human lung epithelial (16HBE14o-) cells is exposed to each material for 24-h, followed by cytotoxicity and genotoxicity evaluation using relative population doubling (RPD) and the cytokinesis-blocked micronucleus (CBMN) assay, respectively. Neutral-FLG induces the greatest (two-fold) significant increase (p 1 µm diameter). The findings of the present study have demonstrated the capability of neutral-FLG and amine-FLG to induce genotoxicity in 16HBE14o- cells through primary indirect mechanisms, suggesting a possible role for carboxyl groups in scavenging radicals produced via oxidative stress

    Few-layer graphene induces both primary and secondary genotoxicity in epithelial barrier models in vitro

    Get PDF
    Background Toxicological evaluation of engineered nanomaterials (ENMs) is essential for occupational health and safety, particularly where bulk manufactured ENMs such as few-layer graphene (FLG) are concerned. Additionally, there is a necessity to develop advanced in vitro models when testing ENMs to provide a physiologically relevant alternative to invasive animal experimentation. The aim of this study was to determine the genotoxicity of non-functionalised (neutral), amine- and carboxyl-functionalised FLG upon both human-transformed type-I (TT1) alveolar epithelial cell monocultures, as well as co-cultures of TT1 and differentiated THP-1 monocytes (d.THP-1 (macrophages)). Results In monocultures, TT1 and d.THP-1 macrophages showed a statistically significant (p < 0.05) cytotoxic response with each ENM following 24-h exposures. Monoculture genotoxicity measured by the in vitro cytokinesis blocked micronucleus (CBMN) assay revealed significant (p < 0.05) micronuclei induction at 8 µg/ml for amine- and carboxyl-FLG. Transmission electron microscopy (TEM) revealed ENMs were internalised by TT1 cells within membrane-bound vesicles. In the co-cultures, ENMs induced genotoxicity in the absence of cytotoxic effects. Co-cultures pre-exposed to 1.5 mM N-acetylcysteine (NAC), showed baseline levels of micronuclei induction, indicating that the genotoxicity observed was driven by oxidative stress. Conclusions Therefore, FLG genotoxicity when examined in monocultures, results in primary-indirect DNA damage; whereas co-cultured cells reveal secondary mechanisms of DNA damage

    Development and Validation of Risk Scores for All-Cause Mortality for a Smartphone-Based "General Health Score" App: Prospective Cohort Study Using the UK Biobank

    Get PDF
    This is the final version. Available on open access from JMIR Publications via the DOI in this recordBACKGROUND: Given the established links between an individual's behaviors and lifestyle factors and potentially adverse health outcomes, univariate or simple multivariate health metrics and scores have been developed to quantify general health at a given point in time and estimate risk of negative future outcomes. However, these health metrics may be challenging for widespread use and are unlikely to be successful at capturing the broader determinants of health in the general population. Hence, there is a need for a multidimensional yet widely employable and accessible way to obtain a comprehensive health metric. OBJECTIVE: The objective of the study was to develop and validate a novel, easily interpretable, points-based health score ("C-Score") derived from metrics measurable using smartphone components and iterations thereof that utilize statistical modeling and machine learning (ML) approaches. METHODS: A literature review was conducted to identify relevant predictor variables for inclusion in the first iteration of a points-based model. This was followed by a prospective cohort study in a UK Biobank population for the purposes of validating the C-Score and developing and comparatively validating variations of the score using statistical and ML models to assess the balance between expediency and ease of interpretability and model complexity. Primary and secondary outcome measures were discrimination of a points-based score for all-cause mortality within 10 years (Harrell c-statistic) and discrimination and calibration of Cox proportional hazards models and ML models that incorporate C-Score values (or raw data inputs) and other predictors to predict the risk of all-cause mortality within 10 years. RESULTS: The study cohort comprised 420,560 individuals. During a cohort follow-up of 4,526,452 person-years, there were 16,188 deaths from any cause (3.85%). The points-based model had good discrimination (c-statistic=0.66). There was a 31% relative reduction in risk of all-cause mortality per decile of increasing C-Score (hazard ratio of 0.69, 95% CI 0.663-0.675). A Cox model integrating age and C-Score had improved discrimination (8 percentage points; c-statistic=0.74) and good calibration. ML approaches did not offer improved discrimination over statistical modeling. CONCLUSIONS: The novel health metric ("C-Score") has good predictive capabilities for all-cause mortality within 10 years. Embedding the C-Score within a smartphone app may represent a useful tool for democratized, individualized health risk prediction. A simple Cox model using C-Score and age balances parsimony and accuracy of risk predictions and could be used to produce absolute risk estimations for app users.Chelsea Digital VenturesHuma Therapeutic

    Are Women Who Work in Bars, Guesthouses and Similar Facilities a Suitable Study Population for Vaginal Microbicide Trials in Africa?

    Get PDF
    BACKGROUND: A feasibility study was conducted to investigate whether an occupational at-risk cohort of women in Mwanza, Tanzania are a suitable study population for future phase III vaginal microbicide trials. METHODOLOGY/PRINCIPAL FINDINGS: 1573 women aged 16-54 y working in traditional and modern bars, restaurants, hotels, guesthouses or as local food-handlers were enrolled at community-based reproductive health clinics, provided specimens for HIV/STI and pregnancy testing, and asked to attend three-monthly clinical follow-up visits for 12-months. HIV positive and negative women were eligible to enter the feasibility study and to receive free reproductive health services at any time. HIV prevalence at baseline was 26.5% (417/1573). HIV incidence among 1156 sero-negative women attending at baseline was 2.9/100PYs. Among 1020 HIV sero-negative, non-pregnant women, HIV incidence was 2.0/100PYs, HSV-2 incidence 12.7/100PYs and pregnancy rate 17.8/100PYs. Retention at three-months was 76.3% (778/1020). Among 771 HIV sero-negative, non-pregnant women attending at three-months, subsequent follow-up at 6, 9 and 12-months was 83.7%, 79.6%, and 72.1% respectively. Older women, those who had not moved home or changed their place of work in the last year, and women working in traditional bars or as local food handlers had the highest re-attendance. CONCLUSIONS/SIGNIFICANCE: Women working in food outlets and recreational facilities in Tanzania and other parts of Africa may be a suitable study population for microbicide and other HIV prevention trials. Effective locally-appropriate strategies to address high pregnancy rates and early losses to follow-up are essential to minimise risk to clinical trials in these settings

    Chemical-genetic disruption of clathrin function spares adaptor complex 3-dependent endosome vesicle biogenesis

    Get PDF
    A role for clathrin in AP-3–dependent vesicle biogenesis has been inferred from biochemical interactions and colocalization between this adaptor and clathrin. The functionality of these molecular associations, however, is controversial. We comprehensively explore the role of clathrin in AP-3–dependent vesicle budding, using rapid chemical-genetic perturbation of clathrin function with a clathrin light chain–FKBP chimera oligomerizable by the drug AP20187. We find that AP-3 interacts and colocalizes with endogenous and recombinant FKBP chimeric clathrin polypeptides in PC12-cell endosomes. AP-3 displays, however, a divergent behavior from AP-1, AP-2, and clathrin chains. AP-3 cofractionates with clathrin-coated vesicle fractions isolated from PC12 cells even after clathrin function is acutely inhibited by AP20187. We predicted that AP20187 would inhibit AP-3 vesicle formation from endosomes after a brefeldin A block. AP-3 vesicle formation continued, however, after brefeldin A wash-out despite impairment of clathrin function by AP20187. These findings indicate that AP-3–clathrin association is dispensable for endosomal AP-3 vesicle budding and suggest that endosomal AP-3–clathrin interactions differ from those by which AP-1 and AP-2 adaptors productively engage clathrin in vesicle biogenesis

    Methodology for assessing soil quantity and quality in life cycle assessment

    No full text
    Changes resulting from economic activities in the quantity and quality of soil in a system under analysis are important considerations in a life cycle assessment (LCA) study because they affect the safeguard subjects of resources and future agricultural productivity. In the approach proposed here, soil is treated as an ancillary which may leave the system in a form different from that at entry. Relevant factors describing possible changes in the soil include: soil mass, nutrients, weeds and weed seeds, pathogens, nutrients, salts, pH, organic matter, and soil texture and structure. Many of the factors can be included by modelling the effects of infrequent activities benefitting the crop(s) under analysis. Three additional factors require separate assessment: changes in the mass of soil, its organic matter content, and soil compaction. Taken together, these approaches provide an integrated assessment method capable of accounting for the overall impacts of agricultural production on soil

    Impact assessment for LCAs involving agricultural production

    No full text
    LCA has been developed primarily for industrial production systems. Application to agricultural systems requires systematic application of existing methodology and new methodological developments. Conventional approaches can obscure potential options for improving the environmental performance of systems involving agricultural production due to use of restricted system boundaries, incomplete assessment of impacts, and exclusion of ancillaries from the analysis. For use of nutrients such as phosphorus, it is proposed that Impact Assessment should be based on the quantity dispersed after use rather than on the input to the productive system. Eventually, the impacts associated with depletion should be based on technological or thermodynamic assessment of concentration for reuse, but this approach requires further theoretical development
    • …
    corecore