214 research outputs found

    A common periodic representation of interaural time differences in mammalian cortex

    Get PDF
    Binaural hearing, the ability to detect small differences in the timing and level of sounds at the two ears, underpins the ability to localize sound sources along the horizontal plane, and is important for decoding complex spatial listening environments into separate objects - a critical factor in 'cocktail-party listening'. For human listeners, the most important spatial cue is the interaural time difference (ITD). Despite many decades of neurophysiological investigations of ITD sensitivity in small mammals, and computational models aimed at accounting for human perception, a lack of concordance between these studies has hampered our understanding of how the human brain represents and processes ITDs. Further, neural coding of spatial cues might depend on factors such as head-size or hearing range, which differ considerably between humans and commonly used experimental animals. Here, using magnetoencephalography (MEG) in human listeners, and electro-corticography (ECoG) recordings in guinea pig-a small mammal representative of a range of animals in which ITD coding has been assessed at the level of single-neuron recordings-we tested whether processing of ITDs in human auditory cortex accords with a frequency-dependent periodic code of ITD reported in small mammals, or whether alternative or additional processing stages implemented in psychoacoustic models of human binaural hearing must be assumed. Our data were well accounted for by a model consisting of periodically tuned ITD-detectors, and were highly consistent across the two species. The results suggest that the representation of ITD in human auditory cortex is similar to that found in other mammalian species, a representation in which neural responses to ITD are determined by phase differences relative to sound frequency rather than, for instance, the range of ITDs permitted by head size or the absolute magnitude or direction of ITD

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    Risk estimates of recurrent congenital anomalies in the UK: a population-based register study

    Get PDF
    BACKGROUND: Recurrence risks for familial congenital anomalies in successive pregnancies are known, but this information for major structural anomalies is lacking. We estimated the absolute and relative risks of recurrent congenital anomaly in the second pregnancy for women with a history of a congenital anomaly in the first pregnancy; for all major anomaly groups and subtypes. METHODS: Population-based register data on 18,605 singleton pregnancies affected by major congenital anomaly occurring in 872,493 singleton stillbirths, live births and terminations of pregnancy for fetal anomaly were obtained from the Northern Congenital Abnormality Survey, North of England, UK, for 1985-2010. Absolute risks (ARs) and relative risks (RRs) for recurrent congenital anomaly (overall, from a similar group, from a dissimilar group) in the second pregnancy were estimated by history of congenital anomaly (overall, by group, by subtype) in the first pregnancy. RESULTS: The estimated prevalences of congenital anomaly in first and second pregnancies were 276 (95% CI 270-281) and 163 (95% CI 159-168) per 10,000 respectively. For women whose first pregnancy was affected by congenital anomaly, the AR of recurrent congenital anomaly in the second pregnancy was 408 (95% CI 365-456) per 10,000; 2.5 (95% CI 2.3-2.8, p<0.0001) times higher than for those with unaffected first pregnancies. For similar anomalies, the recurrence risk was considerably elevated (RR=23.8, 95% CI 19.6-27.9, P<0.0001) while for dissimilar anomalies the increase was more modest (RR=1.4, 95% CI 1.2-1.6, P=0.001), although the ARs for both were 2%. CONCLUSIONS: Absolute recurrence risks varied between 1 in 20 and 1 in 30 for most major anomaly groups. At pre-conception and antenatal counselling, women whose first pregnancy was affected by a congenital anomaly and who are planning a further pregnancy may find it reassuring that despite high relative risks, the absolute recurrence risk is relatively low

    Transposed-letter priming effects in reading aloud words and nonwords

    Get PDF
    A masked nonword prime generated by transposing adjacent inner letters in a word (e.g., jugde) facilitates the recognition of the target word (JUDGE) more than a prime in which the relevant letters are replaced by different letters (e.g., junpe). This transposed-letter (TL) priming effect has been widely interpreted as evidence that the coding of letter position is flexible, rather than precise. Although the TL priming effect has been extensively investigated in the domain of visual word recognition using the lexical decision task, very few studies have investigated this empirical phenomenon in reading aloud. In the present study, we investigated TL priming effects in reading aloud words and nonwords and found that these effects are of equal magnitude for the two types of items. We take this result as support for the view that the TL priming effect arises from noisy perception of letter order within the prime prior to the mapping of orthography to phonology.6 page(s

    Actively evolving subglacial conduits and eskers initiate ice shelf channels at an Antarctic grounding line

    Get PDF
    Ice-shelf channels are long curvilinear tracts of thin ice found on Antarctic ice shelves. Many of them originate near the grounding line, but their formation mechanisms remain poorly understood. Here we use ice-penetrating radar data from Roi Baudouin Ice Shelf, East Antarctica, to infer that the morphology of several ice-shelf channels is seeded upstream of the grounding line by large basal obstacles indenting the ice from below. We interpret each obstacle as an esker ridge formed from sediments deposited by subglacial water conduits, and calculate that the eskers’ size grows towards the grounding line where deposition rates are maximum. Relict features on the shelf indicate that these linked systems of subglacial conduits and ice-shelf channels have been changing over the past few centuries. Because ice-shelf channels are loci where intense melting occurs to thin an ice shelf, these findings expose a novel link between subglacial drainage, sedimentation and ice-shelf stability

    Gestational Valproate Alters BOLD Activation in Response to Complex Social and Primary Sensory Stimuli

    Get PDF
    Valproic acid (VPA) has been used clinically as an anticonvulsant medication during pregnancy; however, it poses a neurodevelopmental risk due to its high teratogenicity. We hypothesized that midgestational (GD) exposure to VPA will lead to lasting deficits in social behavior and the processing of social stimuli. To test this, animals were given a single IP injection of 600 mg/kg of VPA on GD 12.5. Starting on postnatal day 2 (PND2), animals were examined for physical and behavior abnormalities. Functional MRI studies were carried out after PND60. VPA and control animals were given vehicle or a central infusion of a V1a antagonist 90 minutes before imaging. During imaging sessions, rats were presented with a juvenile test male followed by a primary visual stimulus (2 Hz pulsed light) to examine the effects of prenatal VPA on neural processing. VPA rats showed greater increases in BOLD signal response to the social stimulus compared to controls in the temporal cortex, thalamus, midbrain and the hypothalamus. Blocking the V1a receptor reduced the BOLD response in VPA animals only. Neural responses to the visual stimulus, however, were lower in VPA animals. Blockade with the V1a antagonist did not revert this latter effect. Our data suggest that prenatal VPA affects the processing of social stimuli and perhaps social memory, partly through a mechanism that may involve vasopressin V1a neurotransmission

    Interfering with Glycolysis Causes Sir2-Dependent Hyper-Recombination of Saccharomyces cerevisiae Plasmids

    Get PDF
    Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a key metabolic regulator implicated in a variety of cellular processes. It functions as a glycolytic enzyme, a protein kinase, and a metabolic switch under oxidative stress. Its enzymatic inactivation causes a major shift in the primary carbohydrate flux. Furthermore, the protein is implicated in regulating transcription, ER-to-Golgi transport, and apoptosis. We found that Saccharomyces cerevisiae cells null for all GAPDH paralogues (Tdh1, Tdh2, and Tdh3) survived the counter-selection of a GAPDH–encoding plasmid when the NAD+ metabolizing deacetylase Sir2 was overexpressed. This phenotype required a fully functional copy of SIR2 and resulted from hyper-recombination between S. cerevisiae plasmids. In the wild-type background, GAPDH overexpression increased the plasmid recombination rate in a growth-condition dependent manner. We conclude that GAPDH influences yeast episome stability via Sir2 and propose a model for the interplay of Sir2, GAPDH, and the glycolytic flux

    Altered Desaturation and Elongation of Fatty Acids in Hormone-Sensitive Lipase Null Mice

    Get PDF
    Hormone-sensitive lipase (HSL) is expressed predominantly in adipose tissue, where it plays an important role in catecholamine-stimulated hydrolysis of stored lipids, thus mobilizing fatty acids. HSL exhibits broad substrate specificity and besides acylglycerides it hydrolyzes cholesteryl esters, retinyl esters and lipoidal esters. Despite its role in fatty acid mobilization, HSL null mice have been shown to be resistant to diet-induced obesity. The aim of this study was to define lipid profiles in plasma, white adipose tissue (WAT) and liver of HSL null mice, in order to better understand the role of this multifunctional enzyme

    Different mechanisms are implicated in ERBB2 gene overexpression in breast and in other cancers

    Get PDF
    The ERBB2 gene is overexpressed in 30% of breast cancers and this has been correlated with poor prognosis. ERBB2 is upregulated in other cancers such as prostate, pancreas, colon and ovary. In breast cancer cells, the mechanisms leading to ERBB2 gene overexpression are increased transcription and gene amplification. In these cancers, AP-2 transcription factors are involved in ERBB2 overexpression, and AP-2 levels are correlated with p185(c-erbB-2) levels. In this work, we wanted to know if the same molecular mechanisms are responsible for the ERBB2 upregulation in non-breast cancers. We compared ERBB2 gene copy number, p185(c-erbB-2) and mRNA levels with AP-2 levels in several ovary, prostate, colon and pancreas cancer cells. A moderate expression of erbB-2 mRNA and protein were observed in some cells without gene amplification. In contrast to breast cancer cells, AP-2 factors were absent or low in some non-breast cells which did express ERBB2. It is thus likely that AP-2 is not a major player in the increased levels of erbB-2 transcripts in non-breast cancer cells. The transcriptional activity of the ERBB2 promoter in colon and ovary cancer cells was estimated using reporter vectors. The results showed that the promoter regions involved in ERBB2 gene overexpression in breast cancer cells are different from those that lead to the gene upregulation in colon and ovary cancers. In conclusion, our results indicate that different transcriptional and post-transcriptional mechanisms are responsible for the increased levels of erbB-2 transcript and protein in breast and non-breast cancer cells

    Comparative Genomic Hybridization (CGH) Reveals a Neo-X Chromosome and Biased Gene Movement in Stalk-Eyed Flies (Genus Teleopsis)

    Get PDF
    Chromosomal location has a significant effect on the evolutionary dynamics of genes involved in sexual dimorphism, impacting both the pattern of sex-specific gene expression and the rate of duplication and protein evolution for these genes. For nearly all non-model organisms, however, knowledge of chromosomal gene content is minimal and difficult to obtain on a genomic scale. In this study, we utilized Comparative Genomic Hybridization (CGH), using probes designed from EST sequence, to identify genes located on the X chromosome of four species in the stalk-eyed fly genus Teleopsis. Analysis of log2 ratio values of female-to-male hybridization intensities from the CGH microarrays for over 3,400 genes reveals a strongly bimodal distribution that clearly differentiates autosomal from X-linked genes for all four species. Genotyping of 33 and linkage mapping of 28 of these genes in Teleopsis dalmanni indicate the CGH results correctly identified chromosomal location in all cases. Syntenic comparison with Drosophila indicates that 90% of the X-linked genes in Teleopsis are homologous to genes located on chromosome 2L in Drosophila melanogaster, suggesting the formation of a nearly complete neo-X chromosome from Muller element B in the dipteran lineage leading to Teleopsis. Analysis of gene movement both relative to Drosophila and within Teleopsis indicates that gene movement is significantly associated with 1) rates of protein evolution, 2) the pattern of gene duplication, and 3) the evolution of eyespan sexual dimorphism. Overall, this study reveals that diopsids are a critical group for understanding the evolution of sex chromosomes within Diptera. In addition, we demonstrate that CGH is a useful technique for identifying chromosomal sex-linkage and should be applicable to other organisms with EST or partial genomic information
    • …
    corecore