16 research outputs found
Pronounced long-term trends in year-round diet composition of the European shag Phalacrocorax aristotelis
© 2018, Springer-Verlag GmbH Germany, part of Springer Nature. Populations of marine top predators are exhibiting pronounced demographic changes due to alterations in prey availability and quality. Changes in diet composition is a key potential mechanism whereby alterations in prey availability can affect predator demography. Studies of long-term trends in diet have focused on the breeding season. However, long-term changes in non-breeding season diet is an important knowledge gap, since this is generally the most critical period of the year for the demography of marine top predators. In this study, we analysed 495,239 otoliths from 5888 regurgitated pellets collected throughout the annual cycle over three decades (1985â2014) from European shags Phalacrocorax aristotelis on the Isle of May, Scotland (56°11âČN, 02°33âČW). We identified dramatic reductions in the frequency of lesser sandeel Ammodytes marinus occurrence over the study, which was more pronounced during the non-breeding period (96% in 1988 to 45% in 2014), than the breeding period (91â67%). The relative numerical abundance of sandeel per pellet also reduced markedly (100â13% of all otoliths), with similar trends apparent during breeding and non-breeding periods. In contrast, the frequencies of Gadidae, Cottidae, Pleuronectidae and Gobiidae all increased, resulting in a doubling in annual prey richness from 6 prey types per year in 1988 to 12 in 2014. Our study demonstrates that the declining importance of the previously most prominent prey and marked increase in diet diversity is apparent throughout the annual cycle, suggesting that substantial temporal changes in prey populations have occurred, which may have important implications for seabird population dynamics
Recommended from our members
Helminth burden and ecological factors associated with alterations in wild host gastrointestinal microbiota
Infection by gastrointestinal helminths of humans, livestock and wild animals is common, but the impact of such endoparasites on wild hosts and their gut microbiota represents an important overlooked component of population dynamics. Wild host gut microbiota and endoparasites occupy the same physical niche spaces with both affecting host nutrition and health. However, associations between the two are poorly understood. Here we used the commonly parasitized European shag (Phalacrocorax aristotelis) as a model wild host. Forty live adults from the same colony were sampled. Endoscopy was employed to quantify helminth infection in situ. Microbiota from the significantly distinct proventriculus (site of infection), cloacal and faecal gastrointestinal tract microbiomes were characterised using 16S rRNA gene-targeted high-throughput sequencing. We found increasingly strong associations between helminth infection and microbiota composition progressing away from the site of infection, observing a pronounced dysbiosis in microbiota when samples were partitioned into high- and low-burden groups. We posit this dysbiosis is predominately explained by helminths inducing an anti-inflammatory environment in the proventriculus, diverting host immune responses away from themselves. This study, within live wild animals, provides a vital foundation to better understand the mechanisms that underpin the three-way relationship between helminths, microbiota and hosts
Assessing ecological resilience to human induced environmental change in shallow lakes
Sudden unpredictable changes in ecosystems are an increasing source of concern because of
their inherent unpredictability and the difficulties involved in restoration. Our understanding
of the changes that occur across different trophic levels and the form of this change is lacking.
This is especially true of large shallow lakes, where characteristics such as fetch and depth
are close to theoretical boundary values for hysteretic behaviour. The development of
reliable indicators capable of predicting these changes has been the focus of much research
in recent years. The success of these early warning indicators (EWIs) has so far been mixed.
There remain many unknowns about how they perform under a wide variety of conditions
and parameters. Future climate change is predicted to have a wide range of impacts through
the interaction of combined pressures, making the understanding of EWIs and the in-lake
processes that occur during regime shifts imperative. Loch Leven, Scotland, UK, is a large
shallow lake with a history of eutrophication, research and management and as such is an
ideal study site to better understand resilience and regime shifts under a range of interacting
stressors.
The objectives of this research are to: (1) analyse long term data to identify the occurrence
of common tipping points within the chemical (water column nutrient concentrations) and
biological (macrophytes, phytoplankton, zooplankton) components of the loch, then test
these tipping points using five statistical early warning indicators (EWIs) across multiple
rolling window sizes; and (2) quantify the changes in lake ecology using a before/after
analysis and testing for non-linearity, combined with modelling using the aquatic ecosystem
process model PCLake to determine the level of resilience following a regime shift during
recovery from eutrophication; (3) using PCLake, examine the sensitivity of Loch Leven to
regime shifts in the face of predicted environmental change (e.g. climate change, nutrient
pollution).
Statistical analysis identified tipping points across all trophic levels included, from physical
and chemical variables through to apex predators. The success of EWIs in predicting the
tipping points was highly dependent on the number of EWIs used, with window size having
a smaller impact. The 45% window size had the highest overall accuracy across all EWIs but
only detected 16.5% more tipping points than the window size with the lowest overall
accuracy. Differences between individual EWI performance and usage of them as a group
was substantial with a 29.7% increase between the two. In both individual and group use of
EWIs, false positives (early warning without a tipping point) were more common than true
positives (tipping point preceded by EWI), creating significant doubts about their reliability
as management tools.
Significant change was seen across multiple variables and trophic levels in the before/after
analysis following sudden recovery from eutrophication, with most variables also showing
evidence of non-linear change. Modelling of responses to nutrient loading for chlorophyll,
zooplankton and macrophytes, under states from before and after the shift, indicate
hysteresis and thus the presence of feedback mechanisms. The modelling of responses to
nutrient loading and predicted climate change in temperature and precipitation
demonstrated that increases in temperature and decreases in summer precipitation
individually had large impacts on chlorophyll and zooplankton at medium to high phosphorus
(P) loads. However, modelling of the combined effects of these changes resulted in the
highest lake chlorophyll concentrations of all tested scenarios. At low P loads higher
temperatures and increased winter precipitation had the greatest impact on system
resilience with a lower Critical Nutrient Load (CNL). The difference between chlorophyll and
zooplankton as opposed to macrophytes was in the presence of a lower CNL for the increased
winter precipitation-only scenarios which was not seen in the macrophytes. This highlights
the potential role of high winter inputs potentially loaded with particulate matter in reducing
resilience at lower P loads.
This research has highlighted the vulnerability and low resilience of Loch Leven to
environmental change. The presence of multiple tipping points and high levels of EWI activity
show a high level of flexibility in the system. Coupled with the occurrence of widespread
trophic change during a sudden recovery and a small level of hysteresis and high levels of
sensitivity to climate change, the low levels of resilience become clear. The impact of lake-specific
characteristics such as moderate depth, large fetch and a heterogeneous bed
morphology is particularly evident in the limitations on macrophyte cover and the reliance
on zooplankton to determine the hysteresis offset (amount of phosphorus (P) loading
between the two CNL). The presence of these characteristics can be used to identify other
lakes vulnerable to change. Improving the predictive capabilities of resilience indicators such
as EWIs, and better understanding of the ecological changes that occur during non-linear
change in response to recovery and climate change, can help target relevant ecosystem
components for preventative management. These actions may become necessary under
even the most conservative estimates of environmental change
Not Available
Not AvailableZoonoses disproportionately affect tropical communities and are associated with human modification and use of ecosystems. Effective management is hampered by poor ecological understanding of disease transmission and often focuses on human vaccination or treatment. Better ecological understanding of multi-vector and multi-host transmission, social and environmental factors altering human exposure, might enable a broader suite of management options. Options may include âecological interventionsâ that target vectors or hosts and require good knowledge of underlying transmission processes, which may be more effective, economical, and long lasting than conventional approaches. New frameworks identify the hierarchical series of barriers that a pathogen needs to overcome before human spillover occurs and demonstrate how ecological interventions may strengthen these barriers and complement human-focused disease control. We extend these frameworks for vector-borne zoonoses, focusing on Kyasanur Forest Disease Virus (KFDV), a tick-borne, neglected
zoonosis affecting poor forest communities in India, involving complex communities of tick and host species. We identify the hierarchical barriers to pathogen transmission targeted by existing management. We show that existing interventions mainly focus on human barriers (via personal protection and vaccination) or at barriers relating to Kyasanur Forest Disease (KFD) vectors (tick control on cattle and at the sites of host (monkey) deaths). We review the validity of existing management guidance for KFD through literature review and interviews with disease managers. Efficacy of interventions was difficult to quantify due to poor empirical understanding of KFDVâvectorâhost ecology, particularly the role of cattle and monkeys in the disease transmission cycle. Cattle are hypothesised to amplify tick populations. Monkeys may act as sentinels of human infection or are hypothesised to act as amplifying hosts for KFDV, but the spatial scale of risk arising from ticks infected via monkeys versus small mammal reservoirs is unclear. We identified 19 urgent research priorities for refinement of current management strategies or development of ecological interventions targeting vectors and host barriers to prevent disease spillover in the futureNot Availabl