10,033 research outputs found

    The use of time-resolved fluorescence imaging in the study of protein kinase C localisation in cells

    Get PDF
    Background: Two-photon-excitation fluorescence lifetime imaging (2P-FLIM) was used to investigate the association of protein kinase C alpha (PKCĪ±) with caveolin in CHO cells. PKCĪ± is found widely in the cytoplasm and nucleus in most cells. Upon activation, as a result of increased intracellular Ca2+ and production of DAG, through G-protein coupled-phospholipase C signalling, PKC translocates to a variety of regions in the cell where it phosphorylates and interacts with many signalling pathways. Due to its wide distribution, discerning a particular interaction from others within the cell is extremely difficult. Results: Fluorescence energy transfer (FRET), between GFP-PKCĪ± and DsRed-caveolin, was used to investigate the interaction between caveolin and PKC, an aspect of signalling that is poorly understood. Using 2P-FLIM measurements, the lifetime of GFP was found to decrease (quench) in certain regions of the cell from ~2.2 ns to ~1.5 ns when the GFP and DsRed were sufficiently close for FRET to occur. This only occurred when intracellular Ca2+ increased or in the presence of phorbol ester, and was an indication of PKC and caveolin co-localisation under these conditions. In the case of phorbol ester stimulated PKC translocation, as commonly used to model PKC activation, three PKC areas could be delineated. These included PKCĪ± that was not associated with caveolin in the nucleus and cytoplasm, PKCĪ± associated with caveolin in the cytoplasm/perinuclear regions and probably in endosomes, and PKC in the peripheral regions of the cell, possibly indirectly interacting with caveolin. Conclusion: Based on the extent of lifetime quenching observed, the results are consistent with a direct interaction between PKCĪ± and caveolin in the endosomes, and possibly an indirect interaction in the peripheral regions of the cell. The results show that 2P-FLIM-FRET imaging offers an approach that can provide information not only confirming the occurrence of specific protein-protein interactions but where they occur within the cell

    Translating 3D printed pharmaceuticals: From hype to real-world clinical applications

    Get PDF
    Three-dimensional (3D) printing is a revolutionary technology that is disrupting pharmaceutical development by enabling the production of personalised printlets (3D printed drug products) on demand. By creating small batches of dose flexible medicines, this versatile technology offers significant advantages for clinical practice and drug development, namely the ability to personalise medicines to individual patient needs, as well as expedite drug development timelines within preclinical studies through to first-in-human (FIH) and Phase I/II clinical trials. Despite the widely demonstrated benefits of 3D printing pharmaceuticals, the clinical potential of the technology is yet to be realised. In this timely review, we provide an overview of the latest cutting-edge investigations in 3D printing pharmaceuticals in the pre-clinical and clinical arena and offer a forward-looking approach towards strategies to further aid the translation of 3D printing into the clinic

    Reshaping drug development using 3D printing

    Get PDF
    The pharmaceutical industry stands on the brink of a revolution, calling for the recognition and embracement of novel techniques. 3D printing (3DP) is forecast to reshape the way in which drugs are designed, manufactured, and used. Although a clear trend towards personalised fabrication is perceived, here we accentuate the merits and shortcomings of each technology, providing insights into aspects such as the efficiency of production, global supply, and logistics. Contemporary opportunities for 3DP in drug discovery and pharmaceutical development and manufacturing are unveiled, offering a forward-looking view on its potential uses as a digitized tool for personalised dispensing of drugs

    Changes of SERCA activity have only modest effects on sarcoplasmic reticulum Ca2+ content in rat ventricular myocytes

    Get PDF
    ABSTRACT: Changes of the activity of the sarco-endoplasmic reticulum Ca(2+)-ATPase (SERCA) affect the amplitude of the systolic Ca(2+) transient and thence cardiac contractility. This is thought to be due to alterations of SR Ca(2+) content. Recent work on mice in which the expression of SERCA is decreased found that a large reduction of SERCA expression resulted in a proportionately much smaller decrease of SR Ca(2+) content. The aim of the current work was to investigate the quantitative nature of the dependence of both the amplitude of the systolic Ca(2+) transient and SR Ca(2+) content on SERCA activity during acute partial inhibition of SERCA. Experiments were performed on rat ventricular myocytes. Brief application of thapsigargin (1 Ī¼m) resulted in a decrease of SERCA activity as measured from the rate of decay of the systolic Ca(2+) transient. This was accompanied by a decrease in the amplitude of the systolic Ca(2+) transient which was linearly related to that of SERCA activity. However, the fractional decrease in the SR Ca(2+) content was much less than that of SERCA activity. On average SR Ca(2+) content was proportional to SERCA activity raised to the 0.38 Ā± 0.07 power. This shallow dependence of SR content on SERCA activity arises because Ca(2+) release is a steep function of SR Ca(2+) content. In contrast SR Ca(2+) content was increased 4.59 Ā± 0.40 (n = 8)-fold by decreasing ryanodine receptor opening with tetracaine (1 mm). Therefore a modest decrease of SR Ca(2+) content results in a proportionately larger fall of Ca(2+) release from the SR which can balance a larger initiating decrease of SERCA. In conclusion, the shallow dependence of SR Ca(2+) content on SERCA activity is expected for a system in which small changes of SR Ca(2+) content produce larger effects on the amplitude of the systolic Ca(2+) transient

    3D Printed Tablets (Printlets) with Braille and Moon Patterns for Visually Impaired Patients

    Get PDF
    Visual impairment and blindness affects 285 million people worldwide, resulting in a high public health burden. This study reports, for the first time, the use of three-dimensional (3D) printing to create orally disintegrating printlets (ODPs) suited for patients with visual impairment. Printlets were designed with Braille and Moon patterns on their surface, enabling patients to identify medications when taken out of their original packaging. Printlets with different shapes were fabricated to offer additional information, such as the medication indication or its dosing regimen. Despite the presence of the patterns, the printlets retained their original mechanical properties and dissolution characteristics, wherein all the printlets disintegrated within ~5 s, avoiding the need for water and facilitating self-administration of medications. Moreover, the readability of the printlets was verified by a blind person. Overall, this novel and practical approach should reduce medication errors and improve medication adherence in patients with visual impairment

    Genomic comparison of two O111:H<sup>-</sup> enterohemorrhagic Escherichia coli isolates from a historic hemolytic-uremic syndrome outbreak in Australia

    Full text link
    Ā© 2016, American Society for Microbiology. Enterohemorrhagic Escherichia coli (EHEC) is an important cause of diarrhea and hemolytic-uremic syndrome (HUS) worldwide. Australia's worst outbreak of HUS occurred in Adelaide in 1995 and was one of the first major HUS outbreaks attributed to a non-O157 Shiga-toxigenic E. coli (STEC) strain. Molecular analyses conducted at the time suggested that the outbreak was caused by an O111:H- clone, with strains from later in the outbreak harboring an extra copy of the genes encoding the potent Shiga toxin 2 (Stx2). Two decades later, we have used next-generation sequencing to compare two isolates from early and late in this important outbreak. We analyzed genetic content, single-nucleotide polymorphisms (SNPs), and prophage insertion sites; for the latter, we demonstrate how paired-end sequence data can be leveraged to identify such insertion sites. The two strains are genetically identical except for six SNP differences and the presence of not one but two additional Stx2-converting prophages in the later isolate. Isolates from later in the outbreak were associated with higher levels of morbidity, suggesting that the presence of the additional Stx2-converting prophages is significant in terms of the virulence of this clone

    Correction: Life and bladder cancer: protocol for a longitudinal and cross-sectional patient-reported outcomes study of Yorkshire (UK) patients

    Get PDF
    Ā© Author(s) (or their employer(s)) 2019. This article was previously published with an error in figures. The correct figures are below: Figure 1: Study data flow for the longitudinal study (workstream 2). NCRAS, National Cancer Registration and Analysis. (Figure Presented). Figure 2: Study data flow for the cross-sectional study (workstream 3). CRFs, case report forms; PHE, Public Health England; PIS, patient information sheet. (Figure Presented)

    Non-destructive dose verification of two drugs within 3D printed polyprintlets

    Get PDF
    Three-dimensional printing (3DP) is a revolutionary technology in pharmaceuticals, enabling the personalisation of flexible-dose drug products and 3D printed polypills (polyprintlets). A major barrier to entry of this technology is the lack of non-destructive quality control methods capable of verifying the dosage of multiple drugs in polyprintlets at the point of dispensing. In the present study, 3D printed films and cylindrical polyprintlets were loaded with flexible, therapeutic dosages of two distinct drugs (amlodipine and lisinopril) across concentration ranges of 1ā€“5% w/w and 2ā€“10% w/w, respectively. The polyprintlets were non-destructively analysed for dose content using a portable near infrared (NIR) spectrometer and validated calibration models were developed using partial least squares (PLS) regression, which showed excellent linearity (R2 Pred = 0.997, 0.991), accuracy (RMSEP = 0.24%, 0.24%) and specificity (LV1 = 82.77%, 79.55%) for amlodipine and lisinopril, respectively. X-ray powder diffraction (XRPD) and thermogravimetric analysis (TGA) showed that sintering partially transformed the phase of both drugs from the crystalline to amorphous forms. For the first time, we report a non-destructive method for quality control of two separate active ingredients in a single 3D printed drug product using NIR spectroscopy, overcoming a major barrier to the integration of 3D printing into clinical practice

    Releasing fast and slow: Non-destructive prediction of density and drug release from SLS 3D printed tablets using NIR spectroscopy

    Get PDF
    Selective laser sintering (SLS) 3D printing is a revolutionary 3D printing technology that has been found capable of creating drug products with varied release profiles by changing the laser scanning speed. Here, SLS 3D printed formulations (printlets) loaded with a narrow therapeutic index drug (theophylline) were produced using SLS 3D printing at varying laser scanning speeds (100ā€“180 mm/s). The use of reflectance Fourier Transform ā€“ Near Infrared (FT-NIR) spectroscopy was evaluated as a non-destructive approach to predicting 3D printed tablet density and drug release at 2 h and 4 h. The printed drug products formulated with a higher laser speed exhibited an accelerated drug release and reduced density compared with the slower laser scanning speeds. Univariate calibration models were developed based on a baseline shift in the spectra in the third overtone region upon changing physical properties. For density prediction, the developed univariate model had high linearity (R2 value = 0.9335) and accuracy (error 50) for all of the test printlets. Overall, this article demonstrates the feasibility of SLS 3D printing to produce drug products containing a narrow therapeutic index drug across a range of drug release profiles, as well as the potential for FT-NIR spectroscopy to predict the physical characteristics of SLS 3D printed drug products (drug release and density) as a non-destructive quality control method at the point-of-care
    • ā€¦
    corecore