3,989 research outputs found

    Eye movement patterns during the recognition of three-dimensional objects: Preferential fixation of concave surface curvature minima

    Get PDF
    This study used eye movement patterns to examine how high-level shape information is used during 3D object recognition. Eye movements were recorded while observers either actively memorized or passively viewed sets of novel objects, and then during a subsequent recognition memory task. Fixation data were contrasted against different algorithmically generated models of shape analysis based on: (1) regions of internal concave or (2) convex surface curvature discontinuity or (3) external bounding contour. The results showed a preference for fixation at regions of internal local features during both active memorization and passive viewing but also for regions of concave surface curvature during the recognition task. These findings provide new evidence supporting the special functional status of local concave discontinuities in recognition and show how studies of eye movement patterns can elucidate shape information processing in human vision

    Modeled Subglacial Water Flow Routing Supports Localized Intrusive Heating as a Possible Cause of Basal Melting of Mars' South Polar Ice Cap

    Get PDF
    The discovery of a ~20 km wide area of bright subsurface radar reflections, interpreted as liquid water, beneath the Martian south polar layered deposits (SPLD) in data from the Mars Advanced Radar for Subsurface and Ionosphere Sounding (MARSIS) instrument, and the discovery of two geologically recent potential eskers (landforms produced by subglacial melt) associated with viscous flow features in Martian mid-latitudes, has suggested recent basal melting of Martian ice deposits may be feasible, possibly due to locally elevated geothermal heating. Locations of terrestrial subglacial lakes and major drainage axes have been successfully predicted from subglacial hydraulic potential surfaces calculated from surface topography and ice thickness. Here, we use surface topography from the Mars Orbiter Laser Altimeter and SPLD bed elevations derived from MARSIS data to calculate the subglacial hydraulic potential surface beneath the SPLD and determine whether the observed high reflectance area coincides with predicted subglacial lake locations. Given the sensitivity of terrestrial predictions of lake locations to basal topography, we derive over 1000 perturbed topographies (using noise statistics from the MARSIS data) to infer the most likely locations of possible subglacial water bodies and drainage axes. Our results show that the high reflectance area does not coincide with any substantial predicted lake locations; three nearby lake locations are robustly predicted however. We interpret this result as suggesting that the high reflectance area (assuming the interpretation as liquid is correct) is most likely a hydraulically-isolated patch of liquid confined by the surrounding cold-based ice, rather than a topographically-constrained subglacial lake

    Exploiting Chordality in Optimization Algorithms for Model Predictive Control

    Full text link
    In this chapter we show that chordal structure can be used to devise efficient optimization methods for many common model predictive control problems. The chordal structure is used both for computing search directions efficiently as well as for distributing all the other computations in an interior-point method for solving the problem. The chordal structure can stem both from the sequential nature of the problem as well as from distributed formulations of the problem related to scenario trees or other formulations. The framework enables efficient parallel computations.Comment: arXiv admin note: text overlap with arXiv:1502.0638

    Recent Basal Melting of a Mid-Latitude Glacier on Mars

    Get PDF
    Evidence for past basal melting of young (late Amazonian), debris-covered glaciers in Mars’ mid-latitudes is extremely rare. Thus, it is widely thought that these viscous flow features (VFFs) have been perennially frozen to their beds. We identify an instance of recent, localized wet-based mid-latitude glaciation, evidenced by a candidate esker emerging from a VFF in a tectonic rift in Tempe Terra. Eskers are sedimentary ridges deposited in ice-walled meltwater conduits and are indicative of glacial melting. We compare the candidate esker to terrestrial analogues, present a geomorphic map of landforms in the rift, and develop a landsystem model to explain their formation. We propose that the candidate esker formed during a transient phase of wet-based glaciation. We then consider the similarity between the geologic setting of the new candidate esker and that of the only other candidate esker to be identified in association with an existing mid-latitude VFF; both are within tectonic graben/rifts proximal to volcanic provinces. Finally, we calculate potential basal temperatures for a range of VFF thicknesses, driving stresses, mean annual surface temperatures, and geothermal heat fluxes, which unlike previous studies, include the possible role of internal strain heating. Strain heating can form an important additional heat source, especially in flow convergence zones, or where ice is warmer due to elevated surface temperatures or geothermal heat flux. Elevated geothermal heat flux within rifts, perhaps combined with locally-elevated strain heating, may have permitted wet-based glaciation during the late Amazonian, when cold climates precluded more extensive wet-based glaciation on Mars

    A dynamical trichotomy for structured populations experiencing positive density-dependence in stochastic environments

    Full text link
    Positive density-dependence occurs when individuals experience increased survivorship, growth, or reproduction with increased population densities. Mechanisms leading to these positive relationships include mate limitation, saturating predation risk, and cooperative breeding and foraging. Individuals within these populations may differ in age, size, or geographic location and thereby structure these populations. Here, I study structured population models accounting for positive density-dependence and environmental stochasticity i.e. random fluctuations in the demographic rates of the population. Under an accessibility assumption (roughly, stochastic fluctuations can lead to populations getting small and large), these models are shown to exhibit a dynamical trichotomy: (i) for all initial conditions, the population goes asymptotically extinct with probability one, (ii) for all positive initial conditions, the population persists and asymptotically exhibits unbounded growth, and (iii) for all positive initial conditions, there is a positive probability of asymptotic extinction and a complementary positive probability of unbounded growth. The main results are illustrated with applications to spatially structured populations with an Allee effect and age-structured populations experiencing mate limitation

    Interleukin-12 bypasses common gamma-chain signalling in emergency natural killer cell lymphopoiesis

    Get PDF
    Differentiation and homeostasis of natural killer (NK) cells relies on common gamma-chain (Ξ³c)-dependent cytokines, in particular IL-15. Consequently, NK cells do not develop in mice with targeted Ξ³c deletion. Herein we identify an alternative pathway of NK-cell development driven by the proinflammatory cytokine IL-12, which can occur independently of Ξ³c-signalling. In response to viral infection or upon exogenous administration, IL-12 is sufficient to elicit the emergence of a population of CD122+CD49b+ cells by targeting NK-cell precursors (NKPs) in the bone marrow (BM). We confirm the NK-cell identity of these cells by transcriptome-wide analyses and their ability to eliminate tumour cells. Rather than using the conventional pathway of NK-cell development, IL-12-driven CD122+CD49b+ cells remain confined to a NK1.1lowNKp46low stage, but differentiate into NK1.1+NKp46+ cells in the presence of Ξ³c-cytokines. Our data reveal an IL-12-driven hard-wired pathway of emergency NK-cell lymphopoiesis bypassing steady-state Ξ³c-signalling

    Atomic Scale Dynamics Drive Brain-like Avalanches in Percolating Nanostructured Networks.

    Full text link
    Self-assembled networks of nanoparticles and nanowires have recently emerged as promising systems for brain-like computation. Here, we focus on percolating networks of nanoparticles which exhibit brain-like dynamics. We use a combination of experiments and simulations to show that the brain-like network dynamics emerge from atomic-scale switching dynamics inside tunnel gaps that are distributed throughout the network. The atomic-scale dynamics emulate leaky integrate and fire (LIF) mechanisms in biological neurons, leading to the generation of critical avalanches of signals. These avalanches are quantitatively the same as those observed in cortical tissue and are signatures of the correlations that are required for computation. We show that the avalanches are associated with dynamical restructuring of the networks which self-tune to balanced states consistent with self-organized criticality. Our simulations allow visualization of the network states and detailed mechanisms of signal propagation

    Odour-mediated orientation of beetles is influenced by age, sex and morph

    Get PDF
    The behaviour of insects is dictated by a combination of factors and may vary considerably between individuals, but small insects are often considered en masse and thus these differences can be overlooked. For example, the cowpea bruchid Callosobruchus maculatus F. exists naturally in two adult forms: the active (flight) form for dispersal, and the inactive (flightless), more fecund but shorter-lived form. Given that these morphs show dissimilar biology, it is possible that they differ in odour-mediated orientation and yet studies of this species frequently neglect to distinguish morph type, or are carried out only on the inactive morph. Along with sex and age of individual, adult morph could be an important variable determining the biology of this and similar species, informing studies on evolution, ecology and pest management. We used an olfactometer with motion-tracking to investigate whether the olfactory behaviour and orientation of C. maculatus towards infested and uninfested cowpeas and a plant-derived repellent compound, methyl salicylate, differed between morphs or sexes. We found significant differences between the behaviour of male and female beetles and beetles of different ages, as well as interactive effects of sex, morph and age, in response to both host and repellent odours. This study demonstrates that behavioural experiments on insects should control for sex and age, while also considering differences between adult morphs where present in insect species. This finding has broad implications for fundamental entomological research, particularly when exploring the relationships between physiology, behaviour and evolutionary biology, and the application of crop protection strategies

    Optimizing the colour and fabric of targets for the control of the tsetse fly Glossina fuscipes fuscipes

    Get PDF
    Background: Most cases of human African trypanosomiasis (HAT) start with a bite from one of the subspecies of Glossina fuscipes. Tsetse use a range of olfactory and visual stimuli to locate their hosts and this response can be exploited to lure tsetse to insecticide-treated targets thereby reducing transmission. To provide a rational basis for cost-effective designs of target, we undertook studies to identify the optimal target colour. Methodology/Principal Findings: On the Chamaunga islands of Lake Victoria , Kenya, studies were made of the numbers of G. fuscipes fuscipes attracted to targets consisting of a panel (25 cm square) of various coloured fabrics flanked by a panel (also 25 cm square) of fine black netting. Both panels were covered with an electrocuting grid to catch tsetse as they contacted the target. The reflectances of the 37 different-coloured cloth panels utilised in the study were measured spectrophotometrically. Catch was positively correlated with percentage reflectance at the blue (460 nm) wavelength and negatively correlated with reflectance at UV (360 nm) and green (520 nm) wavelengths. The best target was subjectively blue, with percentage reflectances of 3%, 29%, and 20% at 360 nm, 460 nm and 520 nm respectively. The worst target was also, subjectively, blue, but with high reflectances at UV (35% reflectance at 360 nm) wavelengths as well as blue (36% reflectance at 460 nm); the best low UV-reflecting blue caught 3Γ— more tsetse than the high UV-reflecting blue. Conclusions/Significance: Insecticide-treated targets to control G. f. fuscipes should be blue with low reflectance in both the UV and green bands of the spectrum. Targets that are subjectively blue will perform poorly if they also reflect UV strongly. The selection of fabrics for targets should be guided by spectral analysis of the cloth across both the spectrum visible to humans and the UV region
    • …
    corecore