365 research outputs found

    Spin-valley phase diagram of the two-dimensional metal-insulator transition

    Full text link
    Using symmetry breaking strain to tune the valley occupation of a two-dimensional (2D) electron system in an AlAs quantum well, together with an applied in-plane magnetic field to tune the spin polarization, we independently control the system's valley and spin degrees of freedom and map out a spin-valley phase diagram for the 2D metal-insulator transition. The insulating phase occurs in the quadrant where the system is both spin- and valley-polarized. This observation establishes the equivalent roles of spin and valley degrees of freedom in the 2D metal-insulator transition.Comment: 4 pages, 2 figure

    Influence of dental metallic artifact from multislice CT in the assessment of simulated mandibular lesions

    Get PDF
    OBJECTIVE: This study evaluated the influence of metallic dental artifacts on the accuracy of simulated mandibular lesion detection by using multislice technology. MATERIAL AND METHODS: Fifteen macerated mandibles were used. Perforations were done simulating bone lesions and the mandibles were subjected to axial 16 rows multislice CT images using 0.5 mm of slice thickness with 0.3 mm interval of reconstruction. Metallic dental restorations were done and the mandibles were subjected again to CT in the same protocol. The images were analyzed to detect simulated lesions in the mandibles, verifying the loci number and if there was any cortical perforation exposing medullar bone. The analysis was performed by two independent examiners using e-film software. RESULTS: The samples without artifacts presented better results compared to the gold standard (dried mandible with perforations). In the samples without artifacts, all cortical perforation were identified and 46 loci were detected (of 51) in loci number analysis. Among the samples with artifacts, 12 lesions out of 14 were recognized regarding medullar invasion, and 40 out of 51 concerning loci number. The sensitivity in samples without artifacts was 90% and 100% regarding loci number and medullar invasion, respectively. In samples with artifacts, these values dropped to 78% and 86%, respectively. The presence of metallic restorations affected the sensitivity values of the method, but the difference was not significant (p>0.05). CONCLUSIONS: Although there were differences in the results of samples with and without artifacts, the presence of metallic restoration did not lead to misinterpretation of the final diagnosis. However, the validity of multislice CT imaging in this study was established for detection of simulated mandibular bone lesions.CNPqFAPESPCoordenacao de Aperfeicoamento de Pessoal de Nivel Superior (CAPES

    Characteristic Evolution and Matching

    Get PDF
    I review the development of numerical evolution codes for general relativity based upon the characteristic initial value problem. Progress in characteristic evolution is traced from the early stage of 1D feasibility studies to 2D axisymmetric codes that accurately simulate the oscillations and gravitational collapse of relativistic stars and to current 3D codes that provide pieces of a binary black hole spacetime. Cauchy codes have now been successful at simulating all aspects of the binary black hole problem inside an artificially constructed outer boundary. A prime application of characteristic evolution is to extend such simulations to null infinity where the waveform from the binary inspiral and merger can be unambiguously computed. This has now been accomplished by Cauchy-characteristic extraction, where data for the characteristic evolution is supplied by Cauchy data on an extraction worldtube inside the artificial outer boundary. The ultimate application of characteristic evolution is to eliminate the role of this outer boundary by constructing a global solution via Cauchy-characteristic matching. Progress in this direction is discussed.Comment: New version to appear in Living Reviews 2012. arXiv admin note: updated version of arXiv:gr-qc/050809

    Large-scale associations between the leukocyte transcriptome and BOLD responses to speech differ in autism early language outcome subtypes.

    Get PDF
    Heterogeneity in early language development in autism spectrum disorder (ASD) is clinically important and may reflect neurobiologically distinct subtypes. Here, we identified a large-scale association between multiple coordinated blood leukocyte gene coexpression modules and the multivariate functional neuroimaging (fMRI) response to speech. Gene coexpression modules associated with the multivariate fMRI response to speech were different for all pairwise comparisons between typically developing toddlers and toddlers with ASD and poor versus good early language outcome. Associated coexpression modules were enriched in genes that are broadly expressed in the brain and many other tissues. These coexpression modules were also enriched in ASD-associated, prenatal, human-specific, and language-relevant genes. This work highlights distinctive neurobiology in ASD subtypes with different early language outcomes that is present well before such outcomes are known. Associations between neuroimaging measures and gene expression levels in blood leukocytes may offer a unique in vivo window into identifying brain-relevant molecular mechanisms in ASD

    Widespread sensorimotor and frontal cortical atrophy in Amyotrophic Lateral Sclerosis

    Get PDF
    BACKGROUND: Widespread cortical atrophy in Amyotrophic Lateral Sclerosis (ALS) has been described in neuropathological studies. The presence of cortical atrophy in conventional and scientific neuroimaging has been a matter of debate. In studies using computertomography, positron emission tomography, proton magnetic resonance spectroscopy and conventional T2-weighted and proton-weighted images, results have been variable. Recent morphometric studies by magnetic resonance imaging have produced conflicting results regarding the extent of grey and white matter involvement in ALS patients. METHODS: The authors used optimized voxel-based morphometry as an unbiased whole brain approach to detect differences between regional grey and white matter volumes. Seventeen patients with a diagnosis of ALS according to El-Escorial criteria and seventeen age-matched controls received a high resolution anatomical T1 scan. RESULTS: In ALS patients regional grey matter volume (GMV) reductions were found in the pre- and postcentral gyrus bilaterally which extended to premotor, parietal and frontal regions bilaterally compared with controls (p < 0.05, corrected for the entire volume). The revised ALS functional rating scale showed a positive correlation with GMV reduction of the right medial frontal gyrus corresponding to the dorsolateral prefrontal cortex. No significant differences were found for white matter volumes or when grey and white matter density images were investigated. There were no further correlations with clinical variables found. CONCLUSION: In ALS patients, primary sensorimotor cortex atrophy can be regarded as a prominent feature of the disease. Supporting the concept of ALS being a multisytem disorder, our study provides further evidence for extramotor involvement which is widespread. The lack of correlation with common clinical variables probably reflects the fact that heterogeneous disease processes underlie ALS. The discrepancy within all published morphometric studies in ALS so far may be related to differences in patient cohorts and several methodological factors of the data analysis process. Longitudinal studies are required to further clarify the time course and distribution of grey and white matter pathology during the course of ALS

    Stochastic Theory of Early Viral Infection: Continuous versus Burst Production of Virions

    Get PDF
    Viral production from infected cells can occur continuously or in a burst that generally kills the cell. For HIV infection, both modes of production have been suggested. Standard viral dynamic models formulated as sets of ordinary differential equations can not distinguish between these two modes of viral production, as the predicted dynamics is identical as long as infected cells produce the same total number of virions over their lifespan. Here we show that in stochastic models of viral infection the two modes of viral production yield different early term dynamics. Further, we analytically determine the probability that infections initiated with any number of virions and infected cells reach extinction, the state when both the population of virions and infected cells vanish, and show this too has different solutions for continuous and burst production. We also compute the distributions of times to establish infection as well as the distribution of times to extinction starting from both a single virion as well as from a single infected cell for both modes of virion production

    Gestational Valproate Alters BOLD Activation in Response to Complex Social and Primary Sensory Stimuli

    Get PDF
    Valproic acid (VPA) has been used clinically as an anticonvulsant medication during pregnancy; however, it poses a neurodevelopmental risk due to its high teratogenicity. We hypothesized that midgestational (GD) exposure to VPA will lead to lasting deficits in social behavior and the processing of social stimuli. To test this, animals were given a single IP injection of 600 mg/kg of VPA on GD 12.5. Starting on postnatal day 2 (PND2), animals were examined for physical and behavior abnormalities. Functional MRI studies were carried out after PND60. VPA and control animals were given vehicle or a central infusion of a V1a antagonist 90 minutes before imaging. During imaging sessions, rats were presented with a juvenile test male followed by a primary visual stimulus (2 Hz pulsed light) to examine the effects of prenatal VPA on neural processing. VPA rats showed greater increases in BOLD signal response to the social stimulus compared to controls in the temporal cortex, thalamus, midbrain and the hypothalamus. Blocking the V1a receptor reduced the BOLD response in VPA animals only. Neural responses to the visual stimulus, however, were lower in VPA animals. Blockade with the V1a antagonist did not revert this latter effect. Our data suggest that prenatal VPA affects the processing of social stimuli and perhaps social memory, partly through a mechanism that may involve vasopressin V1a neurotransmission

    Animal model integration to AutDB, a genetic database for autism

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the post-genomic era, multi-faceted research on complex disorders such as autism has generated diverse types of molecular information related to its pathogenesis. The rapid accumulation of putative candidate genes/loci for Autism Spectrum Disorders (ASD) and ASD-related animal models poses a major challenge for systematic analysis of their content. We previously created the Autism Database (AutDB) to provide a publicly available web portal for ongoing collection, manual annotation, and visualization of genes linked to ASD. Here, we describe the design, development, and integration of a new module within AutDB for ongoing collection and comprehensive cataloguing of ASD-related animal models.</p> <p>Description</p> <p>As with the original AutDB, all data is extracted from published, peer-reviewed scientific literature. Animal models are annotated with a new standardized vocabulary of phenotypic terms developed by our researchers which is designed to reflect the diverse clinical manifestations of ASD. The new Animal Model module is seamlessly integrated to AutDB for dissemination of diverse information related to ASD. Animal model entries within the new module are linked to corresponding candidate genes in the original "Human Gene" module of the resource, thereby allowing for cross-modal navigation between gene models and human gene studies. Although the current release of the Animal Model module is restricted to mouse models, it was designed with an expandable framework which can easily incorporate additional species and non-genetic etiological models of autism in the future.</p> <p>Conclusions</p> <p>Importantly, this modular ASD database provides a platform from which data mining, bioinformatics, and/or computational biology strategies may be adopted to develop predictive disease models that may offer further insights into the molecular underpinnings of this disorder. It also serves as a general model for disease-driven databases curating phenotypic characteristics of corresponding animal models.</p

    The N-Terminal Domain of the Arenavirus L Protein Is an RNA Endonuclease Essential in mRNA Transcription

    Get PDF
    Arenaviridae synthesize viral mRNAs using short capped primers presumably acquired from cellular transcripts by a ‘cap-snatching’ mechanism. Here, we report the crystal structure and functional characterization of the N-terminal 196 residues (NL1) of the L protein from the prototypic arenavirus: lymphocytic choriomeningitis virus. The NL1 domain is able to bind and cleave RNA. The 2.13 Å resolution crystal structure of NL1 reveals a type II endonuclease α/β architecture similar to the N-terminal end of the influenza virus PA protein. Superimposition of both structures, mutagenesis and reverse genetics studies reveal a unique spatial arrangement of key active site residues related to the PD…(D/E)XK type II endonuclease signature sequence. We show that this endonuclease domain is conserved and active across the virus families Arenaviridae, Bunyaviridae and Orthomyxoviridae and propose that the arenavirus NL1 domain is the Arenaviridae cap-snatching endonuclease
    corecore