466 research outputs found

    A terrestrial search for dark contents of the vacuum, such as dark energy, using atom interferometry

    Full text link
    We describe the theory and first experimental work on our concept for searching on earth for the presence of dark content of the vacuum (DCV) using atom interferometry. Specifically, we have in mind any DCV that has not yet been detected on a laboratory scale, but might manifest itself as dark energy on the cosmological scale. The experimental method uses two atom interferometers to cancel the effect of earth's gravity and diverse noise sources. It depends upon two assumptions: first, that the DCV possesses some space inhomogeneity in density, and second that it exerts a sufficiently strong non-gravitational force on matter. The motion of the apparatus through the DCV should then lead to an irregular variation in the detected matter-wave phase shift. We discuss the nature of this signal and note the problem of distinguishing it from instrumental noise. We also discuss the relation of our experiment to what might be learned by studying the noise in gravitational wave detectors such as LIGO.The paper concludes with a projection that a future search of this nature might be carried out using an atom interferometer in an orbiting satellite. The apparatus is now being constructed

    On Gravitational Waves in Spacetimes with a Nonvanishing Cosmological Constant

    Full text link
    We study the effect of a cosmological constant Λ\Lambda on the propagation and detection of gravitational waves. To this purpose we investigate the linearised Einstein's equations with terms up to linear order in Λ\Lambda in a de Sitter and an anti-de Sitter background spacetime. In this framework the cosmological term does not induce changes in the polarization states of the waves, whereas the amplitude gets modified with terms depending on Λ\Lambda. Moreover, if a source emits a periodic waveform, its periodicity as measured by a distant observer gets modified. These effects are, however, extremely tiny and thus well below the detectability by some twenty orders of magnitude within present gravitational wave detectors such as LIGO or future planned ones such as LISA.Comment: 8 pages, 4 figures, accepted for publication in Physical Review

    Experimental Designs for Binary Data in Switching Measurements on Superconducting Josephson Junctions

    Full text link
    We study the optimal design of switching measurements of small Josephson junction circuits which operate in the macroscopic quantum tunnelling regime. Starting from the D-optimality criterion we derive the optimal design for the estimation of the unknown parameters of the underlying Gumbel type distribution. As a practical method for the measurements, we propose a sequential design that combines heuristic search for initial estimates and maximum likelihood estimation. The presented design has immediate applications in the area of superconducting electronics implying faster data acquisition. The presented experimental results confirm the usefulness of the method. KEY WORDS: optimal design, D-optimality, logistic regression, complementary log-log link, quantum physics, escape measurement

    A Note on the Integral Formulation of Einstein's Equations Induced on a Braneworld

    Full text link
    We revisit the integral formulation (or Green's function approach) of Einstein's equations in the context of braneworlds. The integral formulation has been proposed independently by several authors in the past, based on the assumption that it is possible to give a reinterpretation of the local metric field in curved spacetimes as an integral expression involving sources and boundary conditions. This allows one to separate source-generated and source-free contributions to the metric field. As a consequence, an exact meaning to Mach's Principle can be achieved in the sense that only source-generated (matter fields) contributions to the metric are allowed for; universes which do not obey this condition would be non-Machian. In this paper, we revisit this idea concentrating on a Randall-Sundrum-type model with a non-trivial cosmology on the brane. We argue that the role of the surface term (the source-free contribution) in the braneworld scenario may be quite subtler than in the 4D formulation. This may pose, for instance, an interesting issue to the cosmological constant problem.Comment: 10 pages, no figures, accepted for publication in the General Relativity and Gravitation Journa

    On the possibility of measuring the solar oblateness and some relativistic effects from planetary ranging

    Full text link
    In this paper we first calculate the post-Newtonian gravitoelectric secular rate of the mean anomaly of a test particle freely orbiting a spherically symmetric central mass. Then, we propose a novel approach to suitably combine the presently available planetary ranging data to Mercury, Venus and Mars in order to determine, simultaneously and independently of each other, the Sun's quadrupole mass moment J_2 and the secular advances of the perihelion and the mean anomaly. This would also allow to obtain the PPN parameters gamma and beta independently. We propose to analyze the time series of three linear combinations of the experimental residuals of the rates of the nodes, the longitudes of perihelia and mean anomalies of Mercury, Venus and Mars built up in order to absorb the secular precessions induced by the solar oblateness and the post-Newtonian gravitoelectric forces. The values of the three investigated parameters can be obtained by fitting the expected linear trends with straight lines, determining their slopes in arcseconds per century and suitably normalizing them. According to the present-day EPM2000 ephemerides accuracy, the obtainable precision would be of the order of 10^-4-10^-5 for the PPN parameters and, more interestingly, of 10^-9 for J_2. The future BepiColombo mission should improve the Mercury's orbit by one order of magnitude.Comment: LaTex2e, 11 pages, no figures, 3 tables. Extensively rewritten version. The role of the classical N-body secular precessions has been discussed. New observable found for J2. Improved accuracy in it: 10^-9. The role of BepiColombo discusse

    Testing General Relativity with Satellite Laser Ranging: Recent Developments

    Get PDF
    In this paper the most recent developments in testing General Relativity in the gravitational field of the Earth with the technique of Satellite Laser Ranging are presented. In particular, we concentrate our attention on some gravitoelectric and gravitomagnetic post--Newtonian orbital effects on the motion of a test body in the external field of a central mass.Comment: Latex2e, 10 pages, no figures, no tables. Paper presented at COSPAR2002 conference held in Houston, TX, from 10 October 2002 to 19 October 2002. To appear in Advance in Space Research. References added and update

    Post-Newtonian Gravitational Radiation and Equations of Motion via Direct Integration of the Relaxed Einstein Equations. I. Foundations

    Get PDF
    We present a self-contained framework called Direct Integration of the Relaxed Einstein Equations (DIRE) for calculating equations of motion and gravitational radiation emission for isolated gravitating systems based on the post-Newtonian approximation. We cast the Einstein equations into their ``relaxed'' form of a flat-spacetime wave equation together with a harmonic gauge condition, and solve the equations formally as a retarded integral over the past null cone of the field point (chosen to be within the near zone when calculating equations of motion, and in the far zone when calculating gravitational radiation). The ``inner'' part of this integral(within a sphere of radius R∌\cal R \sim one gravitational wavelength) is approximated in a slow-motion expansion using standard techniques; the ``outer'' part, extending over the radiation zone, is evaluated using a null integration variable. We show generally and explicitly that all contributions to the inner integrals that depend on R\cal R cancel corresponding terms from the outer integrals, and that the outer integrals converge at infinity, subject only to reasonable assumptions about the past behavior of the source. The method cures defects that plagued previous ``brute-force'' slow-motion approaches to motion and gravitational radiation for isolated systems. We detail the procedure for iterating the solutions in a weak-field, slow-motion approximation, and derive expressions for the near-zone field through 3.5 post-Newtonian order in terms of Poisson-like potentials.Comment: 43 pages, RevTeX, 3 figures, submitted to Physical Review
    • 

    corecore