388 research outputs found

    The First Records in Illinois of \u3ci\u3eHeliconius Charitonius\u3c/i\u3e (Lepidoptera: Heliconiidae) and \u3ci\u3ePhoebis Agarithe\u3c/i\u3e (Lepidoptera: Pieridae)

    Get PDF
    (excerpt) Our key to Illinois butterflies, exclusive of the skippers (Hesperiidae), was published in 1980. It includes those butterflies listed by Irwin and Downey in their 1973 Illinois checklist plus two species,Anaea aidea (Guerin-Meneville) (Nymphalidae) and Celastrina ebenina Clench (Lycaenidae), added to the state list after 1973

    A List of the Butterflies (Lepidoptera: Papilionoidea) of the La Rue-Pine Hills Ecological Area

    Get PDF
    A survey of the adult butterfly fauna of the La Rue-Pine Hills Ecological Area, Union County, Illinois, was conducted from March through July in 1979, and March through November in 1980. Forty nine species and subspecies were collected including all six papilionids known to occur in Illinois. Notes were taken on seasonal flight periods and butterfly-plant associations

    Annotated Records of Species of Pentatomoidea (Hemiptera) Collected at Lights

    Get PDF
    Records of specimens of Pentatomoidea collected at various light sources in Alabama, Arizona, Florida, Georgia, Illinois, Louisiana, and Texas are presented. Of the 51 species and subspecies reported, about 75% belong to the Pentatomidae

    Phylogenetic insights on evolutionary novelties in lizards and snakes: sex, birth, bodies, niches

    Get PDF
    Abstract Squamate reptiles (lizards and snakes) are a diverse clade in which there appear to have been multiple origins of many remarkable traits, including (a) parthenogenetic reproduction, (b) viviparity, (c) snake-like, limb-reduced body form, (d ) herbivory, and (e) venom. These repeated transitions make squamates an outstanding/excellent system for addressing many fundamental questions in evolutionary biology. For example, they are the only vertebrate group with true parthenogenesis (with at least 40 separate origins), they have more origins of viviparity than any other group of vertebrates, and they have undergone dramatic changes in body form (lizard-like to snake-like) dozens of times. New molecular phylogenies for squamates have overturned many traditional hypotheses and taxonomies based on morphology and are now revealing exciting new insights into the evolution of many of these traits at both higher and lower taxonomic levels. In this review, we summarize many of these new insights and outline important areas for future research

    Thinking beyond the hybrid:“actually-existing” cities “after neoliberalism” in Boyle <i>et al.</i>

    Get PDF
    In their article, ‘The spatialities of actually existing neoliberalism in Glasgow, 1977 to present’, Mark Boyle, Christopher McWilliams and Gareth Rice (2008) usefully problematise our current understanding of neoliberal urbanism. Our response is aimed at developing a sympathetic but critical approach to Boyle et al's understanding of neoliberal urbanism as illustrated by the Glasgow example. In particular, the counterposing by Boyle et al of a 'hybrid, mutant' model to a 'pure' model of neoliberalism for us misrepresents existing models of neoliberalism as a perfectly finished object rather than a roughly mottled process. That they do not identify any ‘pure’ model leads them to create a straw construct against which they can claim a more sophisticated, refined approach to the messiness of neoliberal urbanism. In contrast, we view neoliberalism as a contested and unstable response to accumulation crises at various scales of analysis

    Review of Acanthocephala (Hemiptera: Heteroptera: Coreidae) of America north of Mexico with a key to species

    Get PDF
    A review of Acanthocephala of America north of Mexico is presented with an updated key to species. A. confraterna is considered a junior synonym of A. terminalis, thus reducing the number of known species in this region from five to four. New state and country records are presented

    An Earthworm Riddle: Systematics and Phylogeography of the Spanish Lumbricid Postandrilus

    Get PDF
    As currently defined, the genus Postandrilus Qui and Bouché, 1998, (Lumbricidae) includes six earthworm species, five occurring in Majorca (Baleares Islands, western Mediterranean) and another in Galicia (NW Spain). This disjunct and restricted distribution raises some interesting phylogeographic questions: (1) Is Postandrilus distribution the result of the separation of the Baleares-Kabylies (BK) microplate from the proto-Iberian Peninsula in the Late Oligocene (30-28 Mya)--vicariant hypothesis? (2) Did Postandrilus diversify in Spain and then colonize the Baleares during the Messinian salinity crisis (MSC) 5.96-5.33 Mya--dispersal hypothesis? (3) Is the distribution the result of a two-step process--vicariance with subsequent dispersal?To answer these questions and assess Postandrilus evolutionary relationships and systematics, we collected all of the six Postandrilus species (46 specimens - 16 locations) and used Aporrectodea morenoe and three Prosellodrilus and two Cataladrilus species as the outgroup. Regions of the nuclear 28S rDNA and mitochondrial 16S rDNA, 12S rDNA, ND1, COII and tRNA genes (4,666 bp) were sequenced and analyzed using maximum likelihood and Bayesian methods of phylogenetic and divergence time estimation. The resulting trees revealed six new Postandrilus species in Majorca that clustered with the other five species already described. This Majorcan clade was sister to an Iberian clade including A. morenoe (outgroup) and Postandrilus bertae. Our phylogeny and divergence time estimates indicated that the split between the Iberian and Majorcan Postandrilus clades took place 30.1 Mya, in concordance with the break of the BK microplate from the proto-Iberian Peninsula, and that the present Majorcan clade diversified 5.7 Mya, during the MSC.Postandrilus is highly diverse including multiple cryptic species in Majorca. The genus is not monophyletic and invalid as currently defined. Postandrilus is of vicariant origin and its radiation began in the Late Oligocene

    Molecular evidence that Heligmosomoides polygyrus from laboratory mice and wood mice are separate species

    Get PDF
    The gastro-intestinal (GI) nematode Heligmosomoides polygyrus is an important experimental model in laboratory mice and a well-studied parasite of wood mice in the field. Despite an extensive literature, the taxonomy of this parasite in different hosts is confused, and it is unclear whether laboratory and field systems represent the same or different Operational Taxonomic Units (OTUs). Molecular analyses reveal high sequence divergence between H. p. bakeri (laboratory) and H. p. polygyrus (field); 3% difference in the ribosomal DNA Internal Transcribed Spacers (ITS) and 8.6% variation in the more rapidly evolving mitochondrial cytochrome c oxidase I (COI) gene. The COI sequence of U.K. H. p. polygyrus is more similar to H. glareoli from voles than to H. p. bakeri, while a single isolate of H. p. polygyrus from Guernsey confirms the extent of genetic variation between H. p. polygyrus populations. Analysis of molecular variance demonstrated that mtCOI sequence variation is associated primarily with groups with distinct ITS2 sequences, and with host identity, but is not partitioned significantly with a single combined taxon H. polygyrus incorporating European and North American isolates. We conclude therefore that the laboratory OTUshould be raised to the level of a distinct species, as H. bakeri from the laboratory mouse Mus musculus, and we reject the hypothesis that H. bakeri has diverged from H. polygyrus in the recent past following introduction into America. However, we are unable to reject the hypothesis that H. polygyrus and H. bakeri are sister taxa, and it may be that H. polygyrus is polyphyletic or paraphyletic
    corecore