77 research outputs found

    Age truncation and portfolio effects in Puget Sound Pacific herring

    Get PDF
    Forage fish undergo dramatic changes in abundance through time. Long-term fluctuations, which have historically been attributed to changes in recruitment, may also be due to changes in adult mortality. Pacific herring, a lightly exploited forage fish in Puget Sound, WA, have exhibited shifts in age structure and decreases in spawning biomass during the past 30 years. Here, we investigate changes in adult mortality as a potential explanation for these shifts. Using a hierarchical, age-structured population model, we indicate that adult natural mortality for Puget Sound Pacific herring has increased since 1973. We find that natural mortality has increased for every age class of adult (age 3+), especially age 4 fish, whose estimated mortality has doubled over the survey time period (from M=0.84 to M=1.76). We demonstrate that long-term shifts in mortality explain changes in age structure, and may explain biomass declines and failure to reach management thresholds for some spawning sites in Puget Sound. Temporal shifts in natural adult mortality could have negative implications for herring and herring predators. For predators, these implications include a reduction in the stability of the herring resource

    Considerations for management strategy evaluation for small pelagic fishes

    Get PDF
    Management strategy evaluation (MSE) is the state-of-the-art approach for testing and comparing management strategies in a way that accounts for multiple sources of uncertainty (e.g. monitoring, estimation, and implementation). Management strategy evaluation can help identify management strategies that are robust to uncertainty about the life history of the target species and its relationship to other species in the food web. Small pelagic fish (e.g. anchovy, herring and sardine) fulfil an important ecological role in marine food webs and present challenges to the use of MSE and other simulation-based evaluation approaches. This is due to considerable stochastic variation in their ecology and life history, which leads to substantial observation and process uncertainty. Here, we summarize the current state of MSE for small pelagic fishes worldwide. We leverage expert input from ecologists and modellers to draw attention to sources of process and observation uncertainty for small pelagic species, providing examples from geographical regions where these species are ecologically, economically and culturally important. Temporal variation in recruitment and other life-history rates, spatial structure and movement, and species interactions are key considerations for small pelagic fishes. We discuss tools for building these into the MSE process, with examples from existing fisheries. We argue that model complexity should be informed by management priorities and whether ecosystem information will be used to generate dynamics or to inform reference points. We recommend that our list of considerations be used in the initial phases of the MSE process for small pelagic fishes or to build complexity on existing single-species models.publishedVersio

    GEOGRAPHIC BASIS FOR ANTARCTIC SCIENTIFIC OBSERVATIONS

    No full text

    Martian Windchill in Terrestrial Terms

    No full text
    • 

    corecore